Abstract

Organic semiconductor lasers are of particular interest as tunable visible laser light sources. For bringing those to market encapsulation is needed to ensure practicable lifetimes. Additionally, fabrication technologies suitable for mass production must be used. We introduce all-polymer chips comprising encapsulated distributed feedback organic semiconductor lasers. Several chips are fabricated in parallel by thermal nanoimprint of the feedback grating on 4″ wafer scale out of poly(methyl methacrylate) (PMMA) and cyclic olefin copolymer (COC). The lasers consisting of the organic semiconductor tris(8-hydroxyquinoline) aluminum (Alq3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyril)-4H-pyrane (DCM) are hermetically sealed by thermally bonding a polymer lid. The organic thin film is placed in a basin within the substrate and is not in direct contact to the lid. Thus, the spectral properties of the lasers are unmodified in comparison to unencapsulated lasers. Grating periods of 378 nm to 428 nm in steps of 10 nm result in lasing at wavelengths of 622 nm to 685 nm. The operational lifetime of the lasers expressed in number of pulses is improved 11-fold (PMMA) and 3-fold (COC) in comparison to unencapsulated PMMA devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [CrossRef] [PubMed]
  2. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001).
    [CrossRef]
  3. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
    [CrossRef]
  4. C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
    [CrossRef]
  5. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
    [CrossRef] [PubMed]
  6. H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
    [CrossRef]
  7. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
    [CrossRef]
  8. B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
    [CrossRef] [PubMed]
  9. S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
    [CrossRef]
  10. T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1-2), 47–51 (2010).
    [CrossRef]
  11. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27(14), 1220–1222 (2002).
    [CrossRef]
  12. C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
    [CrossRef]
  13. T. Woggon, M. Punke, M. Stroisch, M. Bruendel, M. Schelb, C. Vannahme, T. Mappes, J. Mohr, and U. Lemmer, “Organic semiconductor lasers as integrated light sources for optical sensors,” in McGraw-Hill volume on Organic Electronics in Sensors and Biotechnology, J. Shinar and R. Shinar, eds. (McGraw-Hill, New York 2009).
  14. V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998).
    [CrossRef] [PubMed]
  15. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
    [CrossRef]
  16. L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
    [CrossRef]
  17. HesaGlas® VOS, acquired from Notz Plastics AG, www.notzplastics.ch .
  18. TOPAS® 6013, acquired from TOPAS Advanced Polymers, Inc., www.topas.com .
  19. C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
    [CrossRef]
  20. V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
    [CrossRef]
  21. O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).
  22. G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
    [CrossRef]
  23. C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010).
    [CrossRef] [PubMed]
  24. V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575–2577 (1997).
    [CrossRef]

2010 (5)

B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
[CrossRef] [PubMed]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
[CrossRef]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1-2), 47–51 (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010).
[CrossRef] [PubMed]

2009 (2)

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
[CrossRef]

2008 (2)

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

2007 (3)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[CrossRef]

2006 (2)

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

2005 (1)

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

2002 (1)

2001 (1)

1998 (2)

V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998).
[CrossRef] [PubMed]

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

1997 (1)

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575–2577 (1997).
[CrossRef]

1990 (1)

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).

Baldo, M.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Barlow, G. F.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

Berleb, S.

Boffi, P.

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

Brütting, W.

Bulovic, V.

V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998).
[CrossRef] [PubMed]

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575–2577 (1997).
[CrossRef]

Burrows, P.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Butrimovich, O. V.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).

Camposeo, A.

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

Carleton, A.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

Carro, P. D.

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

Christiansen, M. B.

Cingolani, R.

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

de la Rosa, M.

B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
[CrossRef] [PubMed]

Dehm, S.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

Farrell, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Feldmann, J.

Forrest, S.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Forrest, S. R.

V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998).
[CrossRef] [PubMed]

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575–2577 (1997).
[CrossRef]

Fu, Y.-J.

C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
[CrossRef]

Gaudin, O. P. M.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[CrossRef]

Gombert, A.

Guttmann, M.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

Hertel, D.

B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
[CrossRef] [PubMed]

Hinze, P.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Hua, C.-C.

C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
[CrossRef]

Jakobs, P.-J.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

Johannes, H.-H.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Karnutsch, C.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

Khalfin, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Khalfin, V. B.

V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998).
[CrossRef] [PubMed]

Klinkhammer, S.

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1-2), 47–51 (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
[CrossRef]

Kolew, A.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

Kowalsky, W.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Kozlov, V.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Kozlov, V. G.

V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998).
[CrossRef] [PubMed]

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575–2577 (1997).
[CrossRef]

Krauss, T. F.

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

Kremer, J. H.-W. M.

B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
[CrossRef] [PubMed]

Kristensen, A.

Lai, J.-Y.

C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
[CrossRef]

Lee, K.-R.

C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
[CrossRef]

Lemmer, U.

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1-2), 47–51 (2010).
[CrossRef]

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001).
[CrossRef]

Lugovskii, A. P.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).

Maeda, M.

Mappes, T.

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
[CrossRef]

C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010).
[CrossRef] [PubMed]

Meerholz, K.

B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
[CrossRef] [PubMed]

Miyamoto, S.

Mückl, A. G.

Nehls, B.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

O’ Faolain, L.

Oki, Y.

Parthasarathy, G.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Persano, L.

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

Pisignano, D.

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

Ptashnikov, Y. L.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).

Punke, M.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

Rabe, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Ribierre, J.-C.

Richardson, S.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[CrossRef]

Riechel, S.

Riedl, T.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Ruaan, R.-C.

C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
[CrossRef]

Sakata, H.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[CrossRef]

Samtsov, M. P.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).

Samuel, I. D. W.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

Scherf, U.

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Shore, K. A.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

Solaro, P.

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

Stroisch, M.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

Tahraouhi, A.

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

Takeuchi, H.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[CrossRef]

Thompson, M.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Tomiki, M.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[CrossRef]

Tsiminis, G.

Turnbull, G. A.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[CrossRef]

A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. W. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006).
[CrossRef] [PubMed]

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

Vannahme, C.

C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, “Optofluidic dye laser in a foil,” Opt. Express 18(9), 9280–9285 (2010).
[CrossRef] [PubMed]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
[CrossRef]

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

Vasa, N. J.

Vasdekis, A. E.

Voropai, E. S.

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).

Wallikewitz, B. H.

B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
[CrossRef] [PubMed]

Wang, J.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Weimann, T.

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

Wittwer, V.

Woggon, T.

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1-2), 47–51 (2010).
[CrossRef]

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
[CrossRef]

Yamashita, K.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[CrossRef]

Yang, Y.

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

You, Y.

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Adv. Mater. (1)

B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, “A lasing organic light-emitting diode,” Adv. Mater. 22(4), 531–534 (2010).
[CrossRef] [PubMed]

Appl. Phys. B (2)

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[CrossRef]

T. Woggon, S. Klinkhammer, and U. Lemmer, “Compact spectroscopy system based on tunable organic semiconductor lasers,” Appl. Phys. B 99(1-2), 47–51 (2010).
[CrossRef]

Appl. Phys. Lett. (5)

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[CrossRef]

L. Persano, A. Camposeo, P. D. Carro, P. Solaro, R. Cingolani, P. Boffi, and D. Pisignano, “Rapid prototyping encapsulation for polymer light-emitting lasers,” Appl. Phys. Lett. 94(12), 123305 (2009).
[CrossRef]

Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
[CrossRef]

T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006).
[CrossRef]

V. G. Kozlov, V. Bulović, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575–2577 (1997).
[CrossRef]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

C. Karnutsch, M. Stroisch, M. Punke, U. Lemmer, J. Wang, and T. Weimann, “Laser diode pumped organic semiconductor lasers utilizing two-dimensional photonic crystal resonators,” IEEE Photon. Technol. Lett. 19(10), 741–743 (2007).
[CrossRef]

J. Appl. Phys. (2)

G. A. Turnbull, A. Carleton, G. F. Barlow, A. Tahraouhi, T. F. Krauss, K. A. Shore, and I. D. W. Samuel, “Influence of grating characteristics on the operation of circular-grating distributed-feedback polymer lasers,” J. Appl. Phys. 98(2), 023105 (2005).
[CrossRef]

V. Kozlov, V. Bulovic, P. Burrows, M. Baldo, V. Khalfin, G. Parthasarathy, S. Forrest, Y. You, and M. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84(8), 4096 (1998).
[CrossRef]

Microelectron. Eng. (1)

C. Vannahme, S. Klinkhammer, A. Kolew, P.-J. Jakobs, M. Guttmann, S. Dehm, U. Lemmer, and T. Mappes, “Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate,” Microelectron. Eng. 87(5-8), 693–695 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Spectrosc. (1)

O. V. Butrimovich, E. S. Voropai, A. P. Lugovskii, Y. L. Ptashnikov, and M. P. Samtsov, “Mechanism of photodegradation of DCM exposed to visible light,” Opt. Spectrosc. 69, 343–345 (1990).

Polymer (Guildf.) (1)

C.-C. Hua, Y.-J. Fu, K.-R. Lee, R.-C. Ruaan, and J.-Y. Lai, “Effect of sorption behavior on transport properties of gases in polymeric membranes,” Polymer (Guildf.) 50(22), 5308–5313 (2009).
[CrossRef]

Proc. SPIE (1)

S. Klinkhammer, T. Woggon, C. Vannahme, T. Mappes, and U. Lemmer, “Optical spectroscopy with organic semiconductor lasers,” Proc. SPIE 7722, 77221I (2010).
[CrossRef]

Science (1)

V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998).
[CrossRef] [PubMed]

Other (3)

T. Woggon, M. Punke, M. Stroisch, M. Bruendel, M. Schelb, C. Vannahme, T. Mappes, J. Mohr, and U. Lemmer, “Organic semiconductor lasers as integrated light sources for optical sensors,” in McGraw-Hill volume on Organic Electronics in Sensors and Biotechnology, J. Shinar and R. Shinar, eds. (McGraw-Hill, New York 2009).

HesaGlas® VOS, acquired from Notz Plastics AG, www.notzplastics.ch .

TOPAS® 6013, acquired from TOPAS Advanced Polymers, Inc., www.topas.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the main fabrication steps of all-polymer chips comprising encapsulated organic semiconductor lasers. (a.1) Thermal nanoimprint. (a.2) Evaporation of Alq3:DCM. (a.3) Hermetic sealing by thermal bonding. (b) Photograph of two chips of the size of a microscope cover slip (18 × 18 mm2) with encapsulated lasers and a microscope image of a laser (inset). The lasers can be identified by light diffracted from the nanostructures. The left chip consists of PMMA the right one of COC.

Fig. 2
Fig. 2

(a) Exemplary atomic force micrograph of a nanoimprinted DFB grating on a HesaGlas® VOS PMMA substrate. The depth of the trenches is 140 nm. (b) Atomic force micrographs of six different PMMA gratings with varying period on one substrate.

Fig. 3
Fig. 3

(a) Input-output curve of an encapsulated PMMA laser and (b) corresponding spectra of the same laser for selected pump energies. (c) Spectra of different lasers pumped well above threshold all integrated on one PMMA chip. Grating periods are 378, 388, 398, 408, 418, and 428 nm. (d) Spectra of lasers on one COC chip for grating periods of 378, 388, 398, 408, and 418 nm.

Fig. 4
Fig. 4

(a) Threshold of PMMA and COC lasers for grating periods from 378 nm to 418 nm. The device thresholds are plotted with solid symbols. As the polymer material absorbs the pump light partially estimated laser thresholds are plotted using open symbols. (b) Lifetime measurements of an encapsulated PMMA laser and an encapsulated COC laser in comparison to an unencapsulated laser.

Metrics