Abstract

A novel orange-yellow emitting Sr3Al2O5Cl2:Eu2+, Tm3+ phosphor with bright and long persistent luminescence (LPL) has been newly developed. The incorporation of Tm3+ into the Sr3Al2O5Cl2:Eu2+ as an auxiliary activator dominates its long persistent luminescence and thermoluminescence characteristics to a large extent. The emissions in Sr3Al2O5Cl2:Eu2+, Tm3+ for both fluorescence and LPL are due to the 5d → 4f transitions of Eu2+. The orange-yellow long persistent luminescence with the chromaticity coordination of (0.53, 0.46) can persist for nearly 220 min at recognizable intensity level (≥ 0.32 mcd/m2). This investigation provides a new and efficient long persistent phosphor which enriches the color of the existing LPL.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [CrossRef]
  2. C.-C. Kang, R.-S. Liu, J.-C. Chang, and B.-J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S: Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
    [CrossRef]
  3. Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
    [CrossRef]
  4. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [CrossRef]
  5. X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
    [CrossRef]
  6. Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
    [CrossRef]
  7. N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
    [CrossRef]
  8. L. Jiang, C. Chang, and D. Mao, “Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+,” J. Alloy. Comp. 360(1-2), 193–197 (2003).
    [CrossRef]
  9. Q. Fei, C. Chang, and D. Mao, “Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+,” J. Alloy. Comp. 390(1-2), 133–137 (2005).
    [CrossRef]
  10. Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2001).
    [CrossRef]
  11. J. Trojan-Piegza, E. Zych, J. Hölsa, and J. Niittykoski, “Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M= Ca, Sr, Ba),” J. Phys. Chem. C 113(47), 20493–20498 (2009).
    [CrossRef]
  12. B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).
  13. B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
    [CrossRef]
  14. X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
    [CrossRef]
  15. X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
    [CrossRef]
  16. L. Fu, Y. Song, Z. Zhe, and Y. Liu, “Luminescence Properties of Sr2SnO4: Sm3+ Afterglow Phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
    [CrossRef]
  17. Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
    [CrossRef]
  18. D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
    [CrossRef]
  19. F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
    [CrossRef]
  20. T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
    [CrossRef] [PubMed]
  21. R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals,” J. Lumin. 85(1-3), 149–154 (1999).
    [CrossRef]
  22. C. Chang, D. Mao, J. Shen, and C. Feng, “Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties,” J. Alloy. Comp. 348(1-2), 224–230 (2003).
    [CrossRef]
  23. P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
    [CrossRef]
  24. D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Studies on the decay characteristics of strontium aluminate phosphor on thermal treatment,” Mater. Chem. Phys. 78(1), 6–10 (2003).
    [CrossRef]

2010

X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[CrossRef]

L. Fu, Y. Song, Z. Zhe, and Y. Liu, “Luminescence Properties of Sr2SnO4: Sm3+ Afterglow Phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[CrossRef]

2009

J. Trojan-Piegza, E. Zych, J. Hölsa, and J. Niittykoski, “Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M= Ca, Sr, Ba),” J. Phys. Chem. C 113(47), 20493–20498 (2009).
[CrossRef]

2008

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[CrossRef]

2007

P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
[CrossRef]

2006

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

2005

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[CrossRef]

Q. Fei, C. Chang, and D. Mao, “Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+,” J. Alloy. Comp. 390(1-2), 133–137 (2005).
[CrossRef]

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

2004

B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
[CrossRef]

2003

L. Jiang, C. Chang, and D. Mao, “Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+,” J. Alloy. Comp. 360(1-2), 193–197 (2003).
[CrossRef]

B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[CrossRef]

C.-C. Kang, R.-S. Liu, J.-C. Chang, and B.-J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S: Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[CrossRef]

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Studies on the decay characteristics of strontium aluminate phosphor on thermal treatment,” Mater. Chem. Phys. 78(1), 6–10 (2003).
[CrossRef]

C. Chang, D. Mao, J. Shen, and C. Feng, “Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties,” J. Alloy. Comp. 348(1-2), 224–230 (2003).
[CrossRef]

2001

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2001).
[CrossRef]

2000

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

1999

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals,” J. Lumin. 85(1-3), 149–154 (1999).
[CrossRef]

1996

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[CrossRef]

Aitasalo, T.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[CrossRef]

Bagkar, N.

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

Chander, H.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Studies on the decay characteristics of strontium aluminate phosphor on thermal treatment,” Mater. Chem. Phys. 78(1), 6–10 (2003).
[CrossRef]

Chang, C.

Q. Fei, C. Chang, and D. Mao, “Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+,” J. Alloy. Comp. 390(1-2), 133–137 (2005).
[CrossRef]

L. Jiang, C. Chang, and D. Mao, “Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+,” J. Alloy. Comp. 360(1-2), 193–197 (2003).
[CrossRef]

C. Chang, D. Mao, J. Shen, and C. Feng, “Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties,” J. Alloy. Comp. 348(1-2), 224–230 (2003).
[CrossRef]

Chang, J.-C.

C.-C. Kang, R.-S. Liu, J.-C. Chang, and B.-J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S: Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[CrossRef]

Clabau, F.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

Deniard, P.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

Dennis, W.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

Evans, D.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

Fei, Q.

Q. Fei, C. Chang, and D. Mao, “Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+,” J. Alloy. Comp. 390(1-2), 133–137 (2005).
[CrossRef]

Feng, C.

C. Chang, D. Mao, J. Shen, and C. Feng, “Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties,” J. Alloy. Comp. 348(1-2), 224–230 (2003).
[CrossRef]

Fu, L.

L. Fu, Y. Song, Z. Zhe, and Y. Liu, “Luminescence Properties of Sr2SnO4: Sm3+ Afterglow Phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[CrossRef]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

Haranath, D.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Studies on the decay characteristics of strontium aluminate phosphor on thermal treatment,” Mater. Chem. Phys. 78(1), 6–10 (2003).
[CrossRef]

He, H.

X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[CrossRef]

Hirao, K.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

Hölsa, J.

J. Trojan-Piegza, E. Zych, J. Hölsa, and J. Niittykoski, “Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M= Ca, Sr, Ba),” J. Phys. Chem. C 113(47), 20493–20498 (2009).
[CrossRef]

Hölsä, J.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Hu, S. F.

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

Hu, Y.

X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[CrossRef]

Jia, D.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

Jia, W.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

Jiang, L.

L. Jiang, C. Chang, and D. Mao, “Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+,” J. Alloy. Comp. 360(1-2), 193–197 (2003).
[CrossRef]

Jobic, S.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

Jungner, H.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Kang, C.-C.

C.-C. Kang, R.-S. Liu, J.-C. Chang, and B.-J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S: Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[CrossRef]

Katsumata, T.

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals,” J. Lumin. 85(1-3), 149–154 (1999).
[CrossRef]

Ke, W. H.

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

Kodama, N.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

Komuro, S.

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals,” J. Lumin. 85(1-3), 149–154 (1999).
[CrossRef]

Kuang, J.

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[CrossRef]

Lastusaari, M.

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Le Mercier, T.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

Lee, B.-J.

C.-C. Kang, R.-S. Liu, J.-C. Chang, and B.-J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S: Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[CrossRef]

Lei, B.

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[CrossRef]

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[CrossRef]

B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
[CrossRef]

B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).

Lin, C. C.

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

Lin, Y.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[CrossRef]

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2001).
[CrossRef]

Liu, H.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

Liu, J.

B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
[CrossRef]

Liu, R. S.

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

Liu, R.-S.

C.-C. Kang, R.-S. Liu, J.-C. Chang, and B.-J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S: Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[CrossRef]

Liu, Y.

X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[CrossRef]

L. Fu, Y. Song, Z. Zhe, and Y. Liu, “Luminescence Properties of Sr2SnO4: Sm3+ Afterglow Phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[CrossRef]

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[CrossRef]

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[CrossRef]

B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
[CrossRef]

B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).

Luo, Y.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[CrossRef]

Mao, D.

Q. Fei, C. Chang, and D. Mao, “Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+,” J. Alloy. Comp. 390(1-2), 133–137 (2005).
[CrossRef]

L. Jiang, C. Chang, and D. Mao, “Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+,” J. Alloy. Comp. 360(1-2), 193–197 (2003).
[CrossRef]

C. Chang, D. Mao, J. Shen, and C. Feng, “Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties,” J. Alloy. Comp. 348(1-2), 224–230 (2003).
[CrossRef]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[CrossRef]

Morikawa, T.

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals,” J. Lumin. 85(1-3), 149–154 (1999).
[CrossRef]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[CrossRef]

Niittykoski, J.

J. Trojan-Piegza, E. Zych, J. Hölsa, and J. Niittykoski, “Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M= Ca, Sr, Ba),” J. Phys. Chem. C 113(47), 20493–20498 (2009).
[CrossRef]

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

Qiu, J.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

Sakai, R.

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals,” J. Lumin. 85(1-3), 149–154 (1999).
[CrossRef]

Shanker, V.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Studies on the decay characteristics of strontium aluminate phosphor on thermal treatment,” Mater. Chem. Phys. 78(1), 6–10 (2003).
[CrossRef]

Sharma, P.

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Studies on the decay characteristics of strontium aluminate phosphor on thermal treatment,” Mater. Chem. Phys. 78(1), 6–10 (2003).
[CrossRef]

Shen, J.

C. Chang, D. Mao, J. Shen, and C. Feng, “Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties,” J. Alloy. Comp. 348(1-2), 224–230 (2003).
[CrossRef]

Shi, C.

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[CrossRef]

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[CrossRef]

B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
[CrossRef]

B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).

Song, Y.

L. Fu, Y. Song, Z. Zhe, and Y. Liu, “Luminescence Properties of Sr2SnO4: Sm3+ Afterglow Phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[CrossRef]

Sun, B.

P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
[CrossRef]

Sun, X.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[CrossRef]

Takahashi, T.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[CrossRef]

Tang, G.

B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).

Tang, Y. S.

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

Tang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[CrossRef]

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2001).
[CrossRef]

Tanii, Y.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

Teng, X.

X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[CrossRef]

Trojan-Piegza, J.

J. Trojan-Piegza, E. Zych, J. Hölsa, and J. Niittykoski, “Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M= Ca, Sr, Ba),” J. Phys. Chem. C 113(47), 20493–20498 (2009).
[CrossRef]

Wang, X.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[CrossRef]

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[CrossRef]

Whangbo, M.

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

Xu, M.

P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
[CrossRef]

Yamaga, M.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

Ye, Z.

B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
[CrossRef]

B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).

Yen, W.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

Zhang, J.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[CrossRef]

Zhang, P.

P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
[CrossRef]

Zhang, X.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[CrossRef]

Zhang, Y.

P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
[CrossRef]

Zhang, Z.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[CrossRef]

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2001).
[CrossRef]

Zhe, Z.

L. Fu, Y. Song, Z. Zhe, and Y. Liu, “Luminescence Properties of Sr2SnO4: Sm3+ Afterglow Phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[CrossRef]

Zheng, Z.

P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
[CrossRef]

Zhu, J.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

Zhuang, W.

X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[CrossRef]

Zych, E.

J. Trojan-Piegza, E. Zych, J. Hölsa, and J. Niittykoski, “Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M= Ca, Sr, Ba),” J. Phys. Chem. C 113(47), 20493–20498 (2009).
[CrossRef]

Appl. Phys. Lett.

N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, and K. Hirao, “Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals,” Appl. Phys. Lett. 75, 1715–1717 (1999).
[CrossRef]

Y. S. Tang, S. F. Hu, W. H. Ke, C. C. Lin, N. Bagkar, and R. S. Liu, “Near-ultraviolet excitable orange-yellow Sr3 (Al2O5)Cl2: Eu phosphor for potential application in light-emitting diodes,” Appl. Phys. Lett. 93, 131114 (2008).
[CrossRef]

Chem. J. Chin. Univ.

B. Lei, Y. Liu, G. Tang, Z. Ye, and C. Shi, “A New Orange-red Long-lasting Phosphor Material Y2O2S:Sm3+,” Chem. J. Chin. Univ. 24, 208 (2003).

Chem. Mater.

C.-C. Kang, R.-S. Liu, J.-C. Chang, and B.-J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S: Ti, Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[CrossRef]

Y. Liu, B. Lei, and C. Shi, “Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+,” Chem. Mater. 17(8), 2108–2113 (2005).
[CrossRef]

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[CrossRef]

F. Clabau, X. Rocquefelte, T. Le Mercier, P. Deniard, S. Jobic, and M. Whangbo, “Formulation of Phosphorescence Mechanisms in Inorganic Solids Based on a New Model of Defect Conglomeration,” Chem. Mater. 18(14), 3212–3220 (2006).
[CrossRef]

Chin. Phys. Lett.

L. Fu, Y. Song, Z. Zhe, and Y. Liu, “Luminescence Properties of Sr2SnO4: Sm3+ Afterglow Phosphor,” Chin. Phys. Lett. 27(3), 037201 (2010).
[CrossRef]

J. Alloy. Comp.

L. Jiang, C. Chang, and D. Mao, “Luminescent properties of CaMgSi2O6 and Ca2MgSi2O7 phosphors activated by Eu2+, Dy3+ and Nd3+,” J. Alloy. Comp. 360(1-2), 193–197 (2003).
[CrossRef]

Q. Fei, C. Chang, and D. Mao, “Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+,” J. Alloy. Comp. 390(1-2), 133–137 (2005).
[CrossRef]

C. Chang, D. Mao, J. Shen, and C. Feng, “Preparation of long persistent SrO·2Al2O3 ceramics and their luminescent properties,” J. Alloy. Comp. 348(1-2), 224–230 (2003).
[CrossRef]

J. Appl. Phys.

D. Jia, W. Jia, D. Evans, W. Dennis, H. Liu, J. Zhu, and W. Yen, “Trapping processes in CaS: Eu2+, Tm3+,” J. Appl. Phys. 88(6), 3402 (2000).
[CrossRef]

J. Electrochem. Soc.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[CrossRef]

J. Lumin.

X. Teng, Y. Liu, Y. Hu, H. He, and W. Zhuang, “Luminescence properties of Tm3+ co-doped Sr2Si5N8: Eu2+ red phosphor,” J. Lumin. 130(5), 851–854 (2010).
[CrossRef]

R. Sakai, T. Katsumata, S. Komuro, and T. Morikawa, “Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals,” J. Lumin. 85(1-3), 149–154 (1999).
[CrossRef]

J. Mater. Chem.

Y. Liu, J. Kuang, B. Lei, and C. Shi, “Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors,” J. Mater. Chem. 15(37), 4025–4031 (2005).
[CrossRef]

J. Phys. Chem. B

T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, and J. Niittykoski, “Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+.,” J. Phys. Chem. B 110(10), 4589–4598 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

J. Trojan-Piegza, E. Zych, J. Hölsa, and J. Niittykoski, “Spectroscopic Properties of Persistent Luminescence Phosphors: Lu2O3:Tb3+, M2+ (M= Ca, Sr, Ba),” J. Phys. Chem. C 113(47), 20493–20498 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

X. Sun, J. Zhang, X. Zhang, Y. Luo, and X. Wang, “Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5: Eu2+ and Sr3SiO5: Eu2+, Dy3+ phosphors,” J. Phys. D Appl. Phys. 41(19), 195414 (2008).
[CrossRef]

J. Solid State Chem.

B. Lei, Y. Liu, J. Liu, Z. Ye, and C. Shi, “Pink light emitting long-lasting phosphorescence in Sm3+-doped CdSiO3,” J. Solid State Chem. 177(4-5), 1333–1337 (2004).
[CrossRef]

Mater. Chem. Phys.

X. Wang, Z. Zhang, Z. Tang, and Y. Lin, “Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor,” Mater. Chem. Phys. 80(1), 1–5 (2003).
[CrossRef]

D. Haranath, V. Shanker, H. Chander, and P. Sharma, “Studies on the decay characteristics of strontium aluminate phosphor on thermal treatment,” Mater. Chem. Phys. 78(1), 6–10 (2003).
[CrossRef]

Mater. Lett.

Y. Lin, Z. Tang, and Z. Zhang, “Preparation of long-afterglow Sr4Al14O25-based luminescent material and its optical properties,” Mater. Lett. 51(1), 14–18 (2001).
[CrossRef]

Mater. Sci. Eng. B

P. Zhang, M. Xu, Z. Zheng, B. Sun, and Y. Zhang, “Rapid formation of red long afterglow phosphor Sr3Al2O6: Eu2+, Dy3+ by microwave irradiation,” Mater. Sci. Eng. B 136(2-3), 159–164 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of Sr2.985Al2O5Cl2:Eu2+ 0.015, Sr2.955Al2O5Cl2:Eu2+ 0.015, Tm3+ 0.03 and JCPDS Card No.34-0379

Fig. 2
Fig. 2

Excitation and Emission spectra of Sr3Al2O5Cl2:Eu2+ 0.015, Tm3+ 0.03.

Fig. 3
Fig. 3

The LPL decay curve of Sr2.955Al2O5Cl2:Eu2+ 0.015, Tm3+ 0.03; Inset A: Photos of prepared Sr3Al2O5Cl2:Eu2+ 0.015, Tm3+ 0.03 sample was taken at 1 min after the removal of the 365 nm UV light. Inset B: the LPL spectra of Sr2.955Al2O5Cl2:Eu2+ 0.015, Tm3+ 0.03 measured at different times (1 and 8 min) after removal of the excitation source (λexc = 365 nm).

Fig. 4
Fig. 4

CIE chromaticity diagram of the Sr2.955Al2O5Cl2:Eu2+ 0.015, Tm3+ 0.03 at 1min after the removal of the excitation source.

Fig. 5
Fig. 5

Thermoluminescence curves of Sr2.985Al2O5Cl2:Eu2+ 0.015 and Sr2.955Al2O5Cl2:Eu2+ 0.015, Tm3+ 0.03

Metrics