Abstract

Laser-induced self-organization of regular nanoscale layered patterns in fused silica is investigated using spectroscopy and microscopy methods, revealing a high presence of stable broken oxygen bonds. Longitudinal traces are then generated by replicating static irradiation structures where the nanoscale modulation can cover partially or completely the photoinscribed traces. The resulting birefringence, the observed anisotropic light scattering properties, and the capacity to write and erase modulated patterns can be used in designing bulk polarization sensitive devices. Various laser-induced structures with optical properties combining guiding, scattering, and polarization sensitivity are reported. The attached polarization functions were evaluated as a function of the fill factor of the nanostructured domains. The polarization sensitivity allows particular light propagation and confinement properties in three dimensional structures.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kazansky, and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn. 116, 1052–1062 (2008).
    [CrossRef]
  2. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
    [CrossRef]
  3. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16, 1517–1522 (2008).
    [CrossRef] [PubMed]
  4. . V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
    [CrossRef]
  5. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16, 20029–20037 (2008).
    [CrossRef] [PubMed]
  6. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002).
    [CrossRef]
  7. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006).
    [CrossRef] [PubMed]
  8. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  10. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
    [CrossRef] [PubMed]
  11. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 1–18 (2009).
    [CrossRef]
  12. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
    [CrossRef]
  13. V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88, 239–242 (2007).
    [CrossRef]
  14. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
    [CrossRef] [PubMed]
  15. . C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.  103, 063516/1–5 (2008).
    [CrossRef]
  16. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004).
    [CrossRef]
  17. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
    [CrossRef]
  18. B. Poumellec, and M. Lancry, “Damage thresholds in femtosecond laser processing of silica based materials,” Proc. 1st International Workshop on Multiphoton Processes in Glass and Glassy Materials, ed., J. Canning (2006).
  19. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24, 1627–1632 (2007).
    [CrossRef]
  20. . A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
    [CrossRef]
  21. . S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
    [CrossRef]
  22. . I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
    [CrossRef]
  23. . A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
    [CrossRef]
  24. . C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
    [CrossRef]
  25. W. Watanabe, and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10, 603–608 (2002).
    [PubMed]
  26. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
    [CrossRef] [PubMed]
  27. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
    [CrossRef] [PubMed]
  28. . E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103/1–3 (2005).
    [CrossRef]
  29. . J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
    [CrossRef]
  30. M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
    [CrossRef]
  31. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001).
    [CrossRef]
  32. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16, 13979–13989 (2008).
    [CrossRef] [PubMed]
  33. . G. N. Papatheodorou, and A. G. Kalampounias, “In situ measurements of the D1 and D2 Raman band intensities of vitreous and molten silica in the 77-2150K temperature range,” J. Phys.: Condens. Matter 21, 205101/1–5 (2009).
    [CrossRef]
  34. D. L. Griscom, and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239, 66–77 (1998).
    [CrossRef]
  35. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
    [CrossRef] [PubMed]
  36. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008).
    [CrossRef]
  37. . A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
    [CrossRef]
  38. N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).
  39. . M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).
  40. . J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
    [CrossRef]
  41. D. Little, “Glass modification in femtosecond laser written waveguides and the effect of laser polarisation,” PhD Thesis, Macquarie University (2010).
  42. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
    [CrossRef] [PubMed]
  43. Y. Li, M. Froggatt, and T. Erdogan, “Volume Current Method for Analysis of Tilted Fiber Gratings,” J. Lightwave Technol. 19, 1580–1591 (2001).
    [CrossRef]

2009 (5)

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 1–18 (2009).
[CrossRef]

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

. G. N. Papatheodorou, and A. G. Kalampounias, “In situ measurements of the D1 and D2 Raman band intensities of vitreous and molten silica in the 77-2150K temperature range,” J. Phys.: Condens. Matter 21, 205101/1–5 (2009).
[CrossRef]

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[CrossRef] [PubMed]

2008 (10)

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008).
[CrossRef]

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16, 13979–13989 (2008).
[CrossRef] [PubMed]

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
[CrossRef] [PubMed]

. C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.  103, 063516/1–5 (2008).
[CrossRef]

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16, 20029–20037 (2008).
[CrossRef] [PubMed]

P. G. Kazansky, and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn. 116, 1052–1062 (2008).
[CrossRef]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[CrossRef]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16, 1517–1522 (2008).
[CrossRef] [PubMed]

2007 (4)

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88, 239–242 (2007).
[CrossRef]

W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24, 1627–1632 (2007).
[CrossRef]

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

2006 (5)

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
[CrossRef]

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006).
[CrossRef] [PubMed]

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

2005 (5)

. M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).

. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
[CrossRef]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
[CrossRef] [PubMed]

. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103/1–3 (2005).
[CrossRef]

2004 (2)

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[CrossRef] [PubMed]

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004).
[CrossRef]

2003 (1)

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).

2002 (2)

2001 (2)

1999 (2)

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

1998 (1)

D. L. Griscom, and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239, 66–77 (1998).
[CrossRef]

1997 (1)

1996 (1)

Ams, M.

Audouard, E.

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Bado, P.

Barthel, E.

Baumberg, J. J.

Bellouard, Y.

Bhardwaj, V. R.

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

Boero, M.

. M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).

Bonse, J.

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

Brandt, N.

Bricchi, E.

Bulgakova, N. M.

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Burakov, I. M.

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Burgin, J.

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

Cai, W.

Cardinal, T.

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

Chan, J. W.

Cheng, G.

Cheng, Y.

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[CrossRef] [PubMed]

Chin, S. L.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004).
[CrossRef]

Corkum, P. B.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

Couairon, A.

. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
[CrossRef]

Couzi, M.

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

Dai, Y.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[CrossRef] [PubMed]

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Davis, K. M.

Dawes, J. M.

Dekker, P.

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 1–18 (2009).
[CrossRef]

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88, 239–242 (2007).
[CrossRef]

Dugan, M.

El-Khamhawy, A.

. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
[CrossRef]

Erdogan, T.

Foret, M.

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

Franco, M.

. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Froggatt, M.

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
[CrossRef] [PubMed]

Fukata, N.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).

Gamaly, E. G.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

Gottmann, J.

Griscom, D. L.

D. L. Griscom, and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239, 66–77 (1998).
[CrossRef]

Grodsky, R.

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

Guillon, C.

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

Hallo, L.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

Hase, M.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).

Hehlen, B.

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

Herman, P.

Hertel, I. V.

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Hirao, K.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[CrossRef] [PubMed]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[CrossRef]

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

Horn-Solle, H.

Hu, X.

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Husakou, A.

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Huser, T. R.

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

W. Watanabe, and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10, 603–608 (2002).
[PubMed]

Iwata, K.

Jaque, D.

Juodkazis, S.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[CrossRef]

Kalampounias, A. G.

. G. N. Papatheodorou, and A. G. Kalampounias, “In situ measurements of the D1 and D2 Raman band intensities of vitreous and molten silica in the 77-2150K temperature range,” J. Phys.: Condens. Matter 21, 205101/1–5 (2009).
[CrossRef]

Kamata, M.

. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103/1–3 (2005).
[CrossRef]

Kanehira, S.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
[CrossRef] [PubMed]

Kazansky, P. G.

P. G. Kazansky, and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn. 116, 1052–1062 (2008).
[CrossRef]

E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200–2202 (2002).
[CrossRef]

Kikuta, H.

Kitajima, M.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).

Klappauf, B. G.

Krol, D. M.

Langot, P.

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 1–18 (2009).
[CrossRef]

Li, Y.

Libertun, A. R.

Little, D. J.

Liu, Y.

Luther-Davies, B.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

Marshall, G. D.

Matsuo, S.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[CrossRef]

Mauclair, C.

Mermillod-Blondin, A.

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Meshcheryakov, Yu. P.

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

Midorikawa, K.

Mihailov, S. J.

Mills, J. D.

Misawa, H.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[CrossRef]

Mishchik, K.

Miura, K.

Mizuguchi, M.

D. L. Griscom, and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239, 66–77 (1998).
[CrossRef]

Murakami, K.

. M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).

Mysyrowicz, A.

. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Nejadmalayeri, A. H.

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004).
[CrossRef]

Nicolai, P.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

Nishimura, K.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

Nolte, S.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

Obara, M.

. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103/1–3 (2005).
[CrossRef]

Ohira, Y.

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 1–18 (2009).
[CrossRef]

Oshiyama, A.

. M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).

Papatheodorou, G. N.

. G. N. Papatheodorou, and A. G. Kalampounias, “In situ measurements of the D1 and D2 Raman band intensities of vitreous and molten silica in the 77-2150K temperature range,” J. Phys.: Condens. Matter 21, 205101/1–5 (2009).
[CrossRef]

Piestun, R.

Ponader, C. W.

. C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.  103, 063516/1–5 (2008).
[CrossRef]

Prade, B.

. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Qian, B.

Qiu, J.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[CrossRef] [PubMed]

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
[CrossRef] [PubMed]

Rajeev, P. P.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

Rayner, D. M.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

Reichman, W. J.

Richardson, K.

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

Richardson, M.

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

Risbud, S. H.

Rivero, C.

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

Ródenas, A.

Rosenfeld, A.

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Said, A. A.

Sakakura, M.

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008).
[CrossRef]

Saliminia, A.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004).
[CrossRef]

Schaffer, C.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

Schroeder, J. F.

. C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.  103, 063516/1–5 (2008).
[CrossRef]

Shimizu, M.

Shimotsuma, Y.

Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34, 136–138 (2009).
[CrossRef] [PubMed]

P. G. Kazansky, and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn. 116, 1052–1062 (2008).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008).
[CrossRef]

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
[CrossRef] [PubMed]

Siegel, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88, 239–242 (2007).
[CrossRef]

Silvestrelli, P. L.

. M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[CrossRef]

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

Smelser, C. W.

Sokolowski-Tinten, K.

. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
[CrossRef]

Solis, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88, 239–242 (2007).
[CrossRef]

Song, J.

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Stoian, R.

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

Streltsov, A.

. C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.  103, 063516/1–5 (2008).
[CrossRef]

Sudrie, L.

. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Sugimoto, N.

Sugioka, K.

Sun, H.-B.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[CrossRef]

Tanaka, S.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[CrossRef]

Taylor, R. S.

R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
[CrossRef] [PubMed]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

Temnov, V. V.

. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
[CrossRef]

Tikhonchuk, V. T.

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

Toratani, E.

. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103/1–3 (2005).
[CrossRef]

Vallée, F.

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

Vallée, R.

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004).
[CrossRef]

von der Linde, D.

. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
[CrossRef]

Wang, X.

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Watanabe, M.

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[CrossRef]

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

W. Watanabe, and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10, 603–608 (2002).
[PubMed]

Withford, M. J.

Wortmann, D.

Xu, Z.

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Yamamoto, Y.

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).

Zhou, P.

. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
[CrossRef]

Zhu, B.

Zoubir, A.

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett (4)

. M. Boero, A. Oshiyama, P. L. Silvestrelli, and K. Murakami “Free energy molecular dynamics simulations of pulsed-laser-irradiated SiO2: Si–Si bond formation in a matrix of SiO2,” Appl. Phys. Lett.  86, 201910/1–3 (2005).

. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.  94, 041911/1–3 (2009).
[CrossRef]

. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett.  87, 014104/1–3 (2005).
[CrossRef]

. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett.  92, 092904/1–3 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87, 171103/1–3 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

V. Diez-Blanco, J. Siegel, and J. Solis, “Femtosecond laser writing of optical waveguides with controllable core size in high refractive index glass,” Appl. Phys., A Mater. Sci. Process. 88, 239–242 (2007).
[CrossRef]

K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93, 183–188 (2008).
[CrossRef]

J. Appl. Phys (2)

. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys.  101, 043506/1–7 (2007).
[CrossRef]

. C. W. Ponader, J. F. Schroeder, and A. Streltsov, “Origin of the refractive-index increase in laser-written waveguides in glasses,” J. Appl. Phys.  103, 063516/1–5 (2008).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

P. G. Kazansky, and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefrigence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn. 116, 1052–1062 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

D. L. Griscom, and M. Mizuguchi, “Determination of the visible range optical absorption spectrum of peroxy radicals in gamma-irradiated fused silica,” J. Non-Cryst. Solids 239, 66–77 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11, 1–18 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

. G. N. Papatheodorou, and A. G. Kalampounias, “In situ measurements of the D1 and D2 Raman band intensities of vitreous and molten silica in the 77-2150K temperature range,” J. Phys.: Condens. Matter 21, 205101/1–5 (2009).
[CrossRef]

Laser Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008).
[CrossRef]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31, 620–625 (2006).
[CrossRef]

Nano Lett. (1)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic Nanovoid Structures via Femtosecond Laser Irradiation,” Nano Lett. 5, 1591–1595 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun. 241, 529–538 (2004).
[CrossRef]

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun. 171, 279–284 (1999).
[CrossRef]

Opt. Express (7)

D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, “Femtosecond laser modification of fused silica: the effect of writing polarization on Si-O ring structure,” Opt. Express 16, 20029–20037 (2008).
[CrossRef] [PubMed]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express 16, 1517–1522 (2008).
[CrossRef] [PubMed]

W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express 16, 13979–13989 (2008).
[CrossRef] [PubMed]

W. Watanabe, and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express 10, 603–608 (2002).
[PubMed]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. B (4)

. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117/1–5 (2006).
[CrossRef]

. J. Burgin, C. Guillon, P. Langot, F. Vallée, B. Hehlen, and M. Foret, “Vibrational modes and local order in permanently densified silica glasses: Femtosecond and Raman spectroscopy study,” Phys. Rev. B 78, 184293/1–9 (2008).
[CrossRef]

M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959–9964 (1999).
[CrossRef]

. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435/1–11 (2005).
[CrossRef]

Phys. Rev. Lett (2)

. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures,” Phys. Rev. Lett.  96, 166101/1–4 (2006).
[CrossRef]

. V. V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, and D. von der Linde, “Multiphoton ionization in dielectrics: comparison of circular and linear polarization,” Phys. Rev. Lett.  97, 237403/1–3 (2006).
[CrossRef]

Physica B (1)

N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of defect formation in SiO2 induced by femtosecond laser irradiation,” Physica B 340–342, 986–989 (2003).

Other (2)

D. Little, “Glass modification in femtosecond laser written waveguides and the effect of laser polarisation,” PhD Thesis, Macquarie University (2010).

B. Poumellec, and M. Lancry, “Damage thresholds in femtosecond laser processing of silica based materials,” Proc. 1st International Workshop on Multiphoton Processes in Glass and Glassy Materials, ed., J. Canning (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The effect of the irradiation dose as seen in PCM pictures of multipulse (N = 5 × 104) traces in different incident laser power regimes at 100 kHz repetition rate. Moderately tight focusing conditions were used (OB1, NAeff = 0.42). (a,b,c) Static irradiation traces realized at a depth of 200 μm at 10 mW, 20 mW, and 125 mW incident powers. The black colors denote a positive index change. The white regions show a negative index change and are usually birefringent in the present conditions. The laser (160 fs after OB1) comes from the left. The photoinscription character varies from an incubative type at low intensities, relying on electronic effects, to the onset of thermo-mechanical effects at moderate and higher incident powers. (d,e,f) Longitudinally scanned traces (from right to left) in similar conditions as in (a–c) at a scan velocity of 50 μm/s. (g,h,i) Corresponding plasma images observed during photoinscription with increasing input power. The first image (g) is obtained at a slightly lower power than indicated in (a,d). The last two bottom images correspond to the type II-WG luminescence maps at 100 mW and 125 mW input powers.

Fig. 2
Fig. 2

(a–i) SEM images of transverse type II cross-sections of the longitudinal traces showing the morphological differences and the polarization effects in the strong type II regimes at 130 fs and 150 mW (OB2, NAeff = 0.29). The effect of the writing speed is also indicated, leading to a velocity-dependent amount of nanostructured domains in the trace and WG to NG transitions (see horizontal bar). Usually the guiding traces present a central core of unmodulated positive index change as seen in the case of type II-WG. With the speed, the structures evolve towards the uniformly patterned cross-section of non-guiding type II-NG, with a change in the modulation period (from approximately 250 nm at low speeds to 500 nm at higher speeds). (j) Optical loss dependence for type II structures on the writing speed at constant input power (150 mW) and vertical polarization of the photowriting beam (pulse duration 140 fs). The 800 nm injection field direction is horizontal. The written structures are 2.9 mm long for writing conditions given in the figure.

Fig. 3
Fig. 3

(a) Multipulse effects (100 Hz) in static irradiation traces. The 1.2 μJ short pulses are focused at a depth of 200 μm (NA= 0.45) to minimize spherical aberrations. The inset is a blow-up of the modification regions indicating different index contrast in the structure tail as compared to intervoid regions. (b) Comparison of transmission, phase contrast, and cross-polarization microscopy of multipulse structures at 2 μJ. (c,d) Simulations of single pulse nonlinear energy transport [fluence (c) and peak intensity (d)]. The geometrical focus is located at z = 75 μm. The simulation pulse duration is 170 fs and the energy is 1 μJ.

Fig. 4
Fig. 4

(a) Spatial distribution map of the 488 nm excited photoluminescence of NBOHC in the 500–800 nm domain, in transverse sections of structures similar to type II-WG. (b) The PL spectrum of the relevant core and cladding regions (the drop is a Notch filter artifact). (c) Behavior of the D2 Raman feature across the trace, accompanied by a frequency shift of the initial 1063 cm−1 TO vibration feature (ω4). Inset: Raman spectra of central, modified, and lateral, non-modified glass regions, normalized at the 805 cm−1 feature.

Fig. 5
Fig. 5

(a) Loss dependence in type II-WG with the writing pulse duration. The scan velocity is kept constant at 10 μm/s and the input power is 150 mW/OB2 (almost one order of magnitude above type I power threshold at short pulse durations). Pulse duration values are given after the focusing objective, accounting for the respective dispersion. Note the change in the nanostructure fill factor and the increasing asymmetry in the transverse profile. The visible white Ce powder attached to the structures derives from the polishing process.

Fig. 6
Fig. 6

Demonstration of a waveguide QWP consisting of mixed type I and birefringent type II-WG traces. (a) scheme of the QWP where the injection input linear polarization is at 45° with respect to the nanogratings orientation, (b) PCM of the QWP. Type I waveguide is written using 100 mW polarized laser radiation at 100 μm/s, and type II similarly at 10 μm/s. The pulse duration is 130 fs for both writing conditions. The length of the type II guide is 170 μm whereas the length of type I trace is 6 mm (1.5 mm before the birefringent region and 4.5 mm after). (c) near-field mode of the parallel (to planes) polarized output component of the initially linearly polarized 633 nm light, (d) near-field mode for the 45° polarized output component, (e) near-field mode for the perpendicular output component.

Fig. 7
Fig. 7

(a) Polarization sensitive reflectivity of typical type II-NG structures. (b) Conceptual design of a 3D type II octagonal arrangement. (c) Guided modes of 3D type II structures written at different scan velocities. All the structures are made by 130 fs, 140 mW (after OB2), 100 kHz laser pulses with a vertical orientation of the electric field. The left side letters indicate the polarization of the writing laser and, as well, of the injection laser which consists of polarized radiation at 800 nm. The inset icons are indicative for the morphology of the traces, with a transition from WG to NG. The length of all traces is 5.8 mm.

Fig. 8
Fig. 8

Guided modes of an octagonal structure assembled from 5.8 mm quasi type II-NG traces written by different polarization directions. The nanostructured domain is large but a WG core component subsists. The writing polarization is shown in (a) with nanolayers perpendicular to the field. (b) Transmission microscopy image under WL illumination. (c) Near-field modes for vertically polarized 800 nm laser radiation. (d) Near-field modes for horizontally polarized 800 nm laser radiation. All the structures are written by 130 fs, 140 mW/OB2, 100 kHz laser pulses in fused silica glass at a scan speed of 50 μm/s.

Fig. 9
Fig. 9

Regular quadrilateral 3D arrangement of quasi type II-NG structures with vertically aligned nanolayers, showing the confinement of the injected field for different polarizations. The length of the structure is 7.3 mm and the spacing is 50 μm. The traces are written by 130 fs, 140 mW/OB2, 100 kHz laser pulses at a scan speed of 50 μm/s. (a) WL illumination. (b) Near field mode for vertically polarized injection at 800 nm. (c) Near field mode for horizontally polarized injection at 800 nm. (d–h) The near-field guided modes (vertically polarized) of quadratic structures assembled from similarly written quasi type II-NG traces with different lengths and 50 μm separation. The length of the light guides are 2.9, 4.4, 5.8, 7.3, and 8.7 mm in (d), (e), (f), (g), and (h), respectively.

Metrics