Abstract

A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), p. 954.
  2. J. B. Pawley, ed., Handbook of biological confocal microscopy, 3rd ed. (J. Biomed. Opt., 2008), Vol. 13.
  3. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
    [CrossRef] [PubMed]
  4. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  5. J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat. Biotechnol. 26(10), 1135–1145 (2008).
    [CrossRef] [PubMed]
  6. P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nat. Genet. 21(1Suppl), 33–37 (1999).
    [CrossRef] [PubMed]
  7. R. R. Koenen and C. Weber, “Therapeutic targeting of chemokine interactions in atherosclerosis,” Nat. Rev. Drug Discov. 9(2), 141–153 (2010).
    [CrossRef] [PubMed]
  8. E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
    [CrossRef]
  9. L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
    [CrossRef] [PubMed]
  10. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
    [CrossRef]
  11. K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
    [CrossRef] [PubMed]
  12. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
    [CrossRef] [PubMed]
  13. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  14. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef]
  15. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  16. H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
    [CrossRef]
  17. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
    [CrossRef]
  18. E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
    [CrossRef] [PubMed]
  19. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
    [CrossRef] [PubMed]
  20. C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
    [CrossRef]
  21. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
    [CrossRef] [PubMed]
  22. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
    [CrossRef]
  23. B. T. Cunningham and L. L. Laing, “Microplate-based, label-free detection of biomolecular interactions: applications in proteomics,” Expert Rev. Proteomics 3, 271–281 (2006).
    [CrossRef] [PubMed]
  24. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
    [CrossRef]
  25. H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
    [CrossRef]
  26. D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
    [CrossRef] [PubMed]
  27. P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008).
    [CrossRef]
  28. P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett. 95(2), 3 (2009).
    [CrossRef]
  29. I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-Area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
    [CrossRef]
  30. K. R. Hawkins and P. Yager, “Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mTAS,” Lab Chip 3(4), 248 (2003).
    [CrossRef]
  31. M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
    [CrossRef] [PubMed]
  32. S. D. Llopis, W. Stryjewski, and S. A. Soper, “Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices,” Electrophoresis 25(21-22), 3810–3819 (2004).
    [CrossRef] [PubMed]
  33. A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
    [CrossRef]
  34. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
    [CrossRef] [PubMed]
  35. G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
    [CrossRef] [PubMed]
  36. F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).
  37. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272(5258), 85–87 (1996).
    [CrossRef]
  38. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114 (1995).
    [CrossRef]
  39. C. M. S. Torres, ed., Alternative Lithography, 1 ed., Nanostructure Science and Technology (Springer, 2003), p. 425.
  40. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
    [CrossRef]
  41. A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
    [CrossRef] [PubMed]
  42. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
    [CrossRef] [PubMed]
  43. M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. B. Michaelson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: a new approach to high-resolution patterning,” in Proc. SPIE, 1999), 379–389.
  44. P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
    [CrossRef]
  45. D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
    [CrossRef]
  46. W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
    [CrossRef]
  47. D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
    [CrossRef]
  48. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
    [CrossRef] [PubMed]
  49. V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
    [PubMed]
  50. V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

2010

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
[CrossRef]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

R. R. Koenen and C. Weber, “Therapeutic targeting of chemokine interactions in atherosclerosis,” Nat. Rev. Drug Discov. 9(2), 141–153 (2010).
[CrossRef] [PubMed]

V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
[PubMed]

V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

L. C. Estrada, O. E. Martinez, M. Brunstein, S. Bouchoule, L. Le-Gratiet, A. Talneau, I. Sagnes, P. Monnier, J. A. Levenson, and A. M. Yacomotti, “Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface,” Opt. Express 18(4), 3693–3699 (2010).
[CrossRef] [PubMed]

2009

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
[CrossRef]

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett. 95(2), 3 (2009).
[CrossRef]

2008

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008).
[CrossRef]

F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).

J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat. Biotechnol. 26(10), 1135–1145 (2008).
[CrossRef] [PubMed]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

2007

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-Area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

2006

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

B. T. Cunningham and L. L. Laing, “Microplate-based, label-free detection of biomolecular interactions: applications in proteomics,” Expert Rev. Proteomics 3, 271–281 (2006).
[CrossRef] [PubMed]

2005

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

2004

S. D. Llopis, W. Stryjewski, and S. A. Soper, “Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices,” Electrophoresis 25(21-22), 3810–3819 (2004).
[CrossRef] [PubMed]

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[CrossRef] [PubMed]

2003

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[CrossRef] [PubMed]

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

K. R. Hawkins and P. Yager, “Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mTAS,” Lab Chip 3(4), 248 (2003).
[CrossRef]

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

2002

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

2001

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

1999

P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nat. Genet. 21(1Suppl), 33–37 (1999).
[CrossRef] [PubMed]

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

1998

1997

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
[CrossRef]

1996

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

1995

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114 (1995).
[CrossRef]

1970

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
[CrossRef]

Ahn, C.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

Bailey, T.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Bailey, T. C.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Baker, J. H.

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Baldinia, F.

F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).

Barrow, J.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Bashir, R.

Bergeron, M. G.

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bhargava, R.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Block, I. D.

Botstein, D.

P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nat. Genet. 21(1Suppl), 33–37 (1999).
[CrossRef] [PubMed]

Bouchoule, S.

Brown, P. O.

P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nat. Genet. 21(1Suppl), 33–37 (1999).
[CrossRef] [PubMed]

Brunstein, M.

Budach, W.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Carlonia, A.

F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).

Chan, L. L.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-Area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

Chaudhery, V.

V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
[PubMed]

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

Chibout, S.-D.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Choi, B.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114 (1995).
[CrossRef]

Chow, E.

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Colburn, M.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Cordelières, F. P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

Cunningham, B. T.

V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
[PubMed]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
[CrossRef]

V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett. 95(2), 3 (2009).
[CrossRef]

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008).
[CrossRef]

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-Area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

B. T. Cunningham and L. L. Laing, “Microplate-based, label-free detection of biomolecular interactions: applications in proteomics,” Expert Rev. Proteomics 3, 271–281 (2006).
[CrossRef] [PubMed]

Damle, S.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Dauksher, W. J.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Daukshera, W. J.

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Diaz-Quijada, G. A.

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Dorvel, B. R.

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
[CrossRef]

Dumoulina, M. M.

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Duvillaret, L.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

Ekerdt, J.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Ekerdt, J. G.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Estrada, L. C.

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Fink, Y.

Fontaine-Aupart, M.-P.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

Ford, S. M.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Fort, E.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

Ganesh, N.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008).
[CrossRef]

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Garet, F.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

Geddes, C. D.

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

George, S.

V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

Giannettia, A.

F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).

Gryczynski, I.

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[CrossRef] [PubMed]

Guo, L.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
[CrossRef]

Hawkins, K. R.

K. R. Hawkins and P. Yager, “Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mTAS,” Lab Chip 3(4), 248 (2003).
[CrossRef]

Heineman, W. R.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Hooper, A. E.

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Hori, H.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Huang, C. S.

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
[CrossRef]

V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
[PubMed]

Ip, J.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Ji, H.

J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat. Biotechnol. 26(10), 1135–1145 (2008).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23(20), 1573–1575 (1998).
[CrossRef]

Johnson, S.

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Jones, S. I.

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

Kintaka, K.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Kiyosue, K.

Kodali, A. K.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Koenen, R. R.

R. R. Koenen and C. Weber, “Therapeutic targeting of chemokine interactions in atherosclerosis,” Nat. Rev. Drug Discov. 9(2), 141–153 (2010).
[CrossRef] [PubMed]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114 (1995).
[CrossRef]

Kuže, P.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

Laing, L. L.

B. T. Cunningham and L. L. Laing, “Microplate-based, label-free detection of biomolecular interactions: applications in proteomics,” Expert Rev. Proteomics 3, 271–281 (2006).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

Lee, S. H.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

Le-Gratiet, L.

Lemonds, A. M.

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Levenson, J. A.

Lévêque-Fort, S.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

Limbach, P. A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

Llopis, S. D.

S. D. Llopis, W. Stryjewski, and S. A. Soper, “Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices,” Electrophoresis 25(21-22), 3810–3819 (2004).
[CrossRef] [PubMed]

Lu, M.

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
[CrossRef]

V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
[PubMed]

Malicka, J.

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[CrossRef] [PubMed]

Malyarchuk, V.

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Mancini, D.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

Mancini, D. P.

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Mancinia, D.

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

Martinez, O. E.

Mathias, P. C.

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett. 95(2), 3 (2009).
[CrossRef]

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008).
[CrossRef]

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Matveeva, E.

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[CrossRef] [PubMed]

Moal, E. L.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

Monnier, P.

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

Nantel, A.

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Nemec, H.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

Neuschäfer, D.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Nikcevic, I.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

Nishii, J.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Nordquist, K.

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

Nordquist, K. J.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Nounu, H.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Peytavi, R.

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Piruska, A.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

Pokhriyal, A.

V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
[PubMed]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
[CrossRef]

Porrob, G.

F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).

Rauly, D.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114 (1995).
[CrossRef]

Resnick, D. J.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Richard, J.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

Ricolleau, C.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

Roy, E.

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Ruchhoeft, P.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Sagnes, I.

Schulmerich, M.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Schulz, S.

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
[CrossRef]

V. Chaudhery, M. Lu, A. Pokhriyal, C. S. Huang, S. Schulz, and B. T. Cunningham, “Optimization of instrumentation for photonic crystal enhanced fluorescence microscopy,” Submitted to Opt. Express (2010).
[PubMed]

Schumaker, N.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

Seliskar, C. J.

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

Shendure, J.

J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat. Biotechnol. 26(10), 1135–1145 (2008).
[CrossRef] [PubMed]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Soper, S. A.

S. D. Llopis, W. Stryjewski, and S. A. Soper, “Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices,” Electrophoresis 25(21-22), 3810–3819 (2004).
[CrossRef] [PubMed]

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Sreenivasan, S. V.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Stacey, N.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

Stewart, M.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Stryjewski, W.

S. D. Llopis, W. Stryjewski, and S. A. Soper, “Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices,” Electrophoresis 25(21-22), 3810–3819 (2004).
[CrossRef] [PubMed]

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Talin, A. A.

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

Talneau, A.

Tatsu, Y.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Tawa, K.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
[CrossRef]

K. Tawa, H. Hori, K. Kintaka, K. Kiyosue, Y. Tatsu, and J. Nishii, “Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance,” Opt. Express 16(13), 9781–9790 (2008).
[CrossRef] [PubMed]

Tronoa, C.

F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Veresa, T.

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Vodkin, L. O.

Wabuyele, M. B.

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

Wanke, C.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Weber, C.

R. R. Koenen and C. Weber, “Therapeutic targeting of chemokine interactions in atherosclerosis,” Nat. Rev. Drug Discov. 9(2), 141–153 (2010).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Willson, C. G.

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Willsonb, C. G.

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

Winn, J. N.

Wolfe, J. C.

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

Wu, H.-Y.

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett. 95(2), 3 (2009).
[CrossRef]

Xavier, P.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

Yacomotti, A. M.

Yager, P.

K. R. Hawkins and P. Yager, “Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mTAS,” Lab Chip 3(4), 248 (2003).
[CrossRef]

Yen, G.

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

Zhang, W.

N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, E. Chow, V. Malyarchuk, and B. T. Cunningham, “Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors,” Opt. Express 16(26), 21626–21640 (2008).
[CrossRef] [PubMed]

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
[CrossRef]

Zhuang, L.

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
[CrossRef]

Anal. Biochem.

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

Anal. Chem.

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[CrossRef] [PubMed]

A. K. Kodali, M. Schulmerich, J. Ip, G. Yen, B. T. Cunningham, and R. Bhargava, “Narrowband midinfrared reflectance filters using guided mode resonance,” Anal. Chem. 82(13), 5697–5706 (2010).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Appl. Phys. Lett.

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances for improved fluorescence enhancement,” Appl. Phys. Lett. 95(2), 3 (2009).
[CrossRef]

A. Pokhriyal, M. Lu, C. S. Huang, S. Schulz, and B. T. Cunningham, “Multi-color fluorescence enhancement from a photonic crystal surface,” Appl. Phys. Lett. 97(12), 3 (2010).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114 (1995).
[CrossRef]

Biophys. J.

E. L. Moal, E. Fort, S. Lévêque-Fort, F. P. Cordelières, M.-P. Fontaine-Aupart, and C. Ricolleau, “Enhanced fluorescence cell imaging with metal-coated slides,” Biophys. J. 92(6), 2150–2161 (2007).
[CrossRef]

Biosens. Bioelectron.

D. Neuschäfer, W. Budach, C. Wanke, and S.-D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Electrophoresis

M. B. Wabuyele, S. M. Ford, W. Stryjewski, J. Barrow, and S. A. Soper, “Single molecule detection of double-stranded DNA in poly(methylmethacrylate) and polycarbonate microfluidic devices,” Electrophoresis 22(18), 3939–3948 (2001).
[CrossRef] [PubMed]

S. D. Llopis, W. Stryjewski, and S. A. Soper, “Near-infrared time-resolved fluorescence lifetime determinations in poly(methylmethacrylate) microchip electrophoresis devices,” Electrophoresis 25(21-22), 3810–3819 (2004).
[CrossRef] [PubMed]

Expert Rev. Proteomics

B. T. Cunningham and L. L. Laing, “Microplate-based, label-free detection of biomolecular interactions: applications in proteomics,” Expert Rev. Proteomics 3, 271–281 (2006).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Němec, L. Duvillaret, F. Garet, P. Kuže, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96(8), 4072 (2004).
[CrossRef]

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, “Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence,” J. Appl. Phys. 103(9), 094320 (2008).
[CrossRef]

J. Fluoresc.

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

J. Immunol. Methods

E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, “Immunoassays based on directional surface plasmon-coupled emission,” J. Immunol. Methods 286(1-2), 133–140 (2004).
[CrossRef] [PubMed]

J. Lumin.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1-2, 693–701 (1970).
[CrossRef]

J. Vac. Sci. Technol. B

P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” J. Vac. Sci. Technol. B 17(6), 2965 (1999).
[CrossRef]

D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N. Schumaker, “Imprint lithography for integrated circuit fabrication,” J. Vac. Sci. Technol. B 21(6), 2624 (2003).
[CrossRef]

W. J. Dauksher, K. J. Nordquist, D. P. Mancini, D. J. Resnick, J. H. Baker, A. E. Hooper, A. A. Talin, T. C. Bailey, A. M. Lemonds, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Characterization of and imprint results using indium tin oxide-based step and flash imprint lithography templates,” J. Vac. Sci. Technol. B 20(6), 2857 (2002).
[CrossRef]

S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15(6), 2897 (1997).
[CrossRef]

Lab Chip

K. R. Hawkins and P. Yager, “Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in mTAS,” Lab Chip 3(4), 248 (2003).
[CrossRef]

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach, and C. J. Seliskar, “The autofluorescence of plastic materials and chips measured under laser irradiation,” Lab Chip 5(12), 1348–1354 (2005).
[CrossRef] [PubMed]

G. A. Diaz-Quijada, R. Peytavi, A. Nantel, E. Roy, M. G. Bergeron, M. M. Dumoulina, and T. Veresa, “Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices,” Lab Chip 7(7), 856 (2007).
[CrossRef] [PubMed]

Microelectron. Eng.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-Area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007).
[CrossRef]

D. J. Resnick, D. Mancinia, W. J. Daukshera, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willsonb, “Improved step and flash imprint lithography templates for nanofabrication,” Microelectron. Eng. 69(2-4), 412 (2003).
[CrossRef]

Nat. Biotechnol.

J. Shendure and H. Ji, “Next-generation DNA sequencing,” Nat. Biotechnol. 26(10), 1135–1145 (2008).
[CrossRef] [PubMed]

Nat. Genet.

P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nat. Genet. 21(1Suppl), 33–37 (1999).
[CrossRef] [PubMed]

Nat. Methods

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Nat. Nanotechnol.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Nat. Photonics

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654 (2009).
[CrossRef]

Nat. Rev. Drug Discov.

R. R. Koenen and C. Weber, “Therapeutic targeting of chemokine interactions in atherosclerosis,” Nat. Rev. Drug Discov. 9(2), 141–153 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Rev.

H. Hori, K. Tawa, K. Kintaka, J. Nishii, and Y. Tatsu, “Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance,” Opt. Rev. 16(2), 216 (2009).
[CrossRef]

Phys. Rev. B

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Phys. Rev. Lett.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Science

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution,” Science 272(5258), 85–87 (1996).
[CrossRef]

Sens. Actuators B Chem.

F. Baldinia, A. Carlonia, A. Giannettia, G. Porrob, and C. Tronoa, “An optical PMMA biochip based on fluorescence anisotropy: Application to C-reactive protein assay,” Sens. Actuators B Chem. 139, 5 (2008).

Traffic

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic 2(11), 764–774 (2001).
[CrossRef] [PubMed]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), p. 954.

J. B. Pawley, ed., Handbook of biological confocal microscopy, 3rd ed. (J. Biomed. Opt., 2008), Vol. 13.

V. Chaudhery, M. Lu, C. S. Huang, S. George, and B. T. Cunningham, “Photobleaching on photonic crystal enhanced fluorescence surfaces,” J. Fluores. Accepted September (2010).

C. M. S. Torres, ed., Alternative Lithography, 1 ed., Nanostructure Science and Technology (Springer, 2003), p. 425.

M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M. Wedlake, T. B. Michaelson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: a new approach to high-resolution patterning,” in Proc. SPIE, 1999), 379–389.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of PCEF surface on a quartz substrate. The subwavelength grating structure is etched into the quartz substrate and a high refractive index dielectric (TiO2) film is coated on top of the grating as a light confinement layer.

Fig. 2
Fig. 2

(a) RCWA simulated dispersion diagram for the PC used in this study. Resonance for the enhanced excitation for the TM mode is at ~10.8°(b) Simulated near field distribution at λ = 632.8 nm (normalized to the intensity of the incident field).

Fig. 3
Fig. 3

Schematic diagram of the fabrication procedure: (a) The process begins with a dispense pattern of MonoMat on a planarized quartz wafer; (b) The template is pressed against the dispense pattern and then UV cured; (c) The template is pulled away from the solidified grating pattern; (d) A layer of Silspin is spin coated onto the patterned surface; (e) RIE of SilSpin to expose imprint resist; (f) RIE of the imprint resist to expose the quartz surface; (g) RIE of quartz to transfer the pattern onto the wafer; (h) Piranha cleaning of the wafer to remove the imprint resist residues; (i) TiO2 deposition onto the grating.

Fig. 4
Fig. 4

(a) SEM image of the top view of the TiO2 coated grating structure on quartz substrate; (b) AFM image of the PCEF surface showing the grating depth of 40 nm; (c) Photograph of the PCEF surface on 1 × 3 in2 substrate.

Fig. 5
Fig. 5

(a) Wavelength transmission spectrum; (b) Angle transmission spectrum at the excitation wavelength λ = 632.8nm.

Fig. 6
Fig. 6

Autofluorescne intensity from a normal glass slide, a plastic-based PCEF surface, and a quartz-based PCEF surface measured using the PC fluorescent microscope under identical measurement settings.

Fig. 7
Fig. 7

Fluorescence output as a function of angle of incidence for a ~50 nm film of dye-doped polymer applied directly to the PCEF surface.

Fig. 8
Fig. 8

Angle-resolved fluorescence measurement on the quartz PCEF surface.

Fig. 9
Fig. 9

(a) Gain and exposure-optimized images of PPL-Alexa 647 fluorescence on glass compared the PCEF surface; (b) Intensity profile as a function of distance for line of fluorescent image pixels profiling spots of concentration 9.9 µg/ml on both glass and the PCEF surface.

Fig. 10
Fig. 10

Signal-to-noise vs PPL-Alexa 647 concentration showing an improvement in limit of detection (LOD) on a PCEF surface by a factor of 140.

Tables (1)

Tables Icon

Table 1 Measured Photonic Crystal Fluorescence Enhancement

Metrics