Abstract

We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
    [CrossRef]
  2. D. C. Brown, “Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers,” IEEE J. Quantum Electron. 34, 2393–2402 (1998).
    [CrossRef]
  3. D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
    [CrossRef]
  4. T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb;YAG for high-power solid-state lasers,” Proc. SPIE 3381, 200–205 (1998) (Note: A Reviewer of this paper has indicated that operation of Yb:YAG at cryogenic temperatures was achieved prior to this reference, but provided no details. We have been unable to confirm this based on our search of the open literature.).
    [CrossRef]
  5. P. A. Schulz, S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991).
    [CrossRef]
  6. G. Erbert, I. Bass, R. Hackel, S. Jenkins, K. Kanz, and J. Paisner, “43-w, CW Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, DC, 1991), pp. 390–392.
  7. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
    [CrossRef]
  8. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
    [CrossRef]
  9. J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
    [CrossRef]
  10. S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
    [CrossRef] [PubMed]
  11. Y. Ahahane, M. Aoyama, K. Ogawa, K. Tsuji, S. Tokita, J. Kawanaka, H. Nishioka, K. Yamakawa, “High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification,” Opt. Lett. 31, 1899–1901 (2007).
    [CrossRef]
  12. K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
    [CrossRef] [PubMed]
  13. K. H. Hong, C. J. Lai, A. Siddiqui, F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17(19), 16911–16919 (2009).
    [CrossRef] [PubMed]
  14. K. H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S. W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010).
    [CrossRef] [PubMed]
  15. J. Dong, M. Bass, “Dependence of the Yb3+ emission cross-section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [CrossRef]
  16. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  17. D. C. Brown, “High-Power Cryogenic Yb:YAG Solid-State Lasers,” 6th Annual Directed Energy Symposium Proceedings, Albuquerque, NM (2003).
  18. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
    [CrossRef]
  19. D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
    [CrossRef]
  20. D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
    [CrossRef]
  21. P. Lacovara, “Energy transfer and up-conversion in Yb:YAG and Yb:Er:YAG,” Ph.D. Thesis, Boston University (1992), Available from University Microfilms Inc., Ann Arbor, MI, USA.
  22. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, (New York: Plenum, 1977) vol. 13
  23. D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
    [CrossRef]
  24. D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. (to be published).
  25. D. C. Brown, T. M. Bruno, V. Vitali, “Saturated absorption effects in CW-pumped solid-state lasers,” IEEE J. Quantum Electron. (to be published).
  26. J. Kawanaka, “New Concept of DPSSL,” US-Japan Workshop on Laser-IFE, General Atomics, San Diego (2005), http://aries.ucsd.edu/LIB/MEETINGS/0503-USJ-LIFE/

2010 (1)

2009 (1)

2008 (3)

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

2007 (4)

2005 (4)

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[CrossRef]

2003 (1)

1998 (3)

D. C. Brown, “Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers,” IEEE J. Quantum Electron. 34, 2393–2402 (1998).
[CrossRef]

D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
[CrossRef]

T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb;YAG for high-power solid-state lasers,” Proc. SPIE 3381, 200–205 (1998) (Note: A Reviewer of this paper has indicated that operation of Yb:YAG at cryogenic temperatures was achieved prior to this reference, but provided no details. We have been unable to confirm this based on our search of the open literature.).
[CrossRef]

1997 (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

1991 (1)

P. A. Schulz, S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991).
[CrossRef]

Abeeluck, A. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ahahane, Y.

Aoyama, M.

Awtry, A. R.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Bass, M.

Bennett, L. L.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Brasseur, J. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Brown, D. C.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[CrossRef]

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
[CrossRef]

D. C. Brown, “Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers,” IEEE J. Quantum Electron. 34, 2393–2402 (1998).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

D. C. Brown, T. M. Bruno, V. Vitali, “Saturated absorption effects in CW-pumped solid-state lasers,” IEEE J. Quantum Electron. (to be published).

D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. (to be published).

Bruno, T. M.

D. C. Brown, T. M. Bruno, V. Vitali, “Saturated absorption effects in CW-pumped solid-state lasers,” IEEE J. Quantum Electron. (to be published).

Cone, R. L.

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Crow, T.

T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb;YAG for high-power solid-state lasers,” Proc. SPIE 3381, 200–205 (1998) (Note: A Reviewer of this paper has indicated that operation of Yb:YAG at cryogenic temperatures was achieved prior to this reference, but provided no details. We have been unable to confirm this based on our search of the open literature.).
[CrossRef]

Cuchiara, M. H.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Dong, J.

Eggleton, B. J.

Equal, R. W.

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Fan, T. Y.

K. H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S. W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35(11), 1752–1754 (2010).
[CrossRef] [PubMed]

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. O. Ilday, T. Y. Fan, F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb;YAG for high-power solid-state lasers,” Proc. SPIE 3381, 200–205 (1998) (Note: A Reviewer of this paper has indicated that operation of Yb:YAG at cryogenic temperatures was achieved prior to this reference, but provided no details. We have been unable to confirm this based on our search of the open literature.).
[CrossRef]

Fujita, M.

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[CrossRef]

Gopinath, J.

Gopinath, J. T.

Guelzow, J.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Hampton, R. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Henion, S. R.

P. A. Schulz, S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991).
[CrossRef]

Hoden, B.

T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb;YAG for high-power solid-state lasers,” Proc. SPIE 3381, 200–205 (1998) (Note: A Reviewer of this paper has indicated that operation of Yb:YAG at cryogenic temperatures was achieved prior to this reference, but provided no details. We have been unable to confirm this based on our search of the open literature.).
[CrossRef]

Hong, K. H.

Huang, S. W.

Hybl, J.

Hybl, J. D.

Ilday, F. O.

Izawa, Y.

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[CrossRef]

Kärtner, F. X.

Kawanaka, J.

Kawashima, T.

S. Tokita, J. Kawanaka, Y. Izawa, M. Fujita, T. Kawashima, “23.7-W picosecond cryogenic-Yb:YAG multipass amplifier,” Opt. Express 15(7), 3955–3961 (2007).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[CrossRef]

Kowalewski, K.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

Kuper, J. W.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Lai, C. J.

Li, E.

Lotito, B. J.

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Meng, L. S.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Miller, N. J.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Moses, J.

Newmann, D. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Nishioka, H.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Ogawa, K.

Rand, D.

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Schulz, P. A.

P. A. Schulz, S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991).
[CrossRef]

Shortoff, K. E.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

Siddiqui, A.

Siddiqui, A. M.

Singley, J. M.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Sun, Y.

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

Tokita, S.

Tsuji, K.

Vitali, V.

D. C. Brown, T. M. Bruno, V. Vitali, “Saturated absorption effects in CW-pumped solid-state lasers,” IEEE J. Quantum Electron. (to be published).

D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. (to be published).

Yager, E.

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

Yamakawa, K.

Appl. Phys. B (1)

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80, 635–638 (2005).
[CrossRef]

IEEE J. Quantum Electron. (6)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

D. C. Brown, “Nonlinear thermal and stress effects and scaling behavior of YAG slab amplifiers,” IEEE J. Quantum Electron. 34, 2393–2402 (1998).
[CrossRef]

D. C. Brown, “Nonlinear thermal distortion in YAG rod amplifiers,” IEEE J. Quantum Electron. 34, 2383–2392 (1998).
[CrossRef]

P. A. Schulz, S. R. Henion, “Liquid-nitrogen-cooled Ti:Al2O3 laser,” IEEE J. Quantum Electron. 27, 1039–1047 (1991).
[CrossRef]

D. C. Brown, V. Vitali, “Yb:YAG Kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. (to be published).

D. C. Brown, T. M. Bruno, V. Vitali, “Saturated absorption effects in CW-pumped solid-state lasers,” IEEE J. Quantum Electron. (to be published).

IEEE J. Sel. Top. Quantum Electron. (3)

D. C. Brown, R. L. Cone, Y. Sun, R. W. Equal, “Yb:YAG Absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron. 11, 604–612 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587–599 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007).
[CrossRef]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (4)

D. C. Brown, J. M. Singley, E. Yager, J. W. Kuper, B. J. Lotito, L. L. Bennett, “Innovative high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6552, 65520D (2007).
[CrossRef]

D. C. Brown, J. M. Singley, E. Yager, K. Kowalewski, J. Guelzow, J. W. Kuper, “Kilowatt class high-power CW Yb:YAG cryogenic laser,” Proc. SPIE 6952, 69520K (2008).
[CrossRef]

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, D. K. Newmann, “2.3-kw continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L (2008).
[CrossRef]

T. Y. Fan, T. Crow, B. Hoden, “Cooled Yb;YAG for high-power solid-state lasers,” Proc. SPIE 3381, 200–205 (1998) (Note: A Reviewer of this paper has indicated that operation of Yb:YAG at cryogenic temperatures was achieved prior to this reference, but provided no details. We have been unable to confirm this based on our search of the open literature.).
[CrossRef]

Other (5)

G. Erbert, I. Bass, R. Hackel, S. Jenkins, K. Kanz, and J. Paisner, “43-w, CW Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, vol. 10 of 1991 Technical Digest Series (Optical Society of America, Washington, DC, 1991), pp. 390–392.

P. Lacovara, “Energy transfer and up-conversion in Yb:YAG and Yb:Er:YAG,” Ph.D. Thesis, Boston University (1992), Available from University Microfilms Inc., Ann Arbor, MI, USA.

Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, (New York: Plenum, 1977) vol. 13

D. C. Brown, “High-Power Cryogenic Yb:YAG Solid-State Lasers,” 6th Annual Directed Energy Symposium Proceedings, Albuquerque, NM (2003).

J. Kawanaka, “New Concept of DPSSL,” US-Japan Workshop on Laser-IFE, General Atomics, San Diego (2005), http://aries.ucsd.edu/LIB/MEETINGS/0503-USJ-LIFE/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

Fig. 1
Fig. 1

Thermal conductivity of Yb:YAG as a function of absolute temperature and Yb doping density. Curves from top to bottom are 0, 2, 4, 10, 15, and 25 at-% Yb. The curves for 0, 2, 4, and 15 at-% Yb use the data of [9] while the curves for 10 and 25 at-% Yb are extrapolated from the data of [9].

Fig. 2
Fig. 2

Thermal expansion coefficient () and thermo-optic coefficient () as a function of temperature in the range 100-300 K for the laser material Y3Al5O12.

Fig. 3
Fig. 3

Yb:YAG – Sapphire Cryogenic Crystal Assembly.

Fig. 4
Fig. 4

Sapphire Thermal Conductivity as a Function of Temperature Perpendicular () and Parallel () to the C-Axis.

Fig. 5
Fig. 5

Absorption cross-section of Yb:YAG as a function of wavelength at 75 K.

Fig. 6
Fig. 6

Absorption of Yb:YAG at 75K as a function of penetration depth for a center wavelength of 939 nm and a FWHM bandwidth of 3 nm. Blue open circles are absorption values generated using a finite-element version of Eq. (4), and the smooth curve is a least-squares fit.

Fig. 7
Fig. 7

Heat density Q as a function of Z coordinate deposited in the center of the Yb:YAG crystal.

Fig. 8
Fig. 8

Temperature distribution in the Z-Y plane through the center of the Yb:YAG crystal.

Fig. 9
Fig. 9

Heat flux in the Z-Y plane through the center of the crystal assembly, showing the transport of heat out of the Yb:YAG disk, through the sapphire, and ultimately into the copper heat sink through the indium annuli.

Fig. 10
Fig. 10

Transverse radial temperature distribution at the outer faces of the sapphire crystals in contact with vacuum.

Fig. 11
Fig. 11

Radial temperature distribution in the center of the Yb:YAG crystal.

Fig. 12
Fig. 12

Longitudinal temperature distribution through the center of the crystal assembly.

Fig. 13
Fig. 13

Number of waves phase accumulation in Yb:YAG crystal as a function of radius for 35 W/side pumping (), and 100 W/side pumping ().

Fig. 14
Fig. 14

Rendering of Yb:YAG Cryogenic CW Oscillator-Amplifier System.

Fig. 20
Fig. 20

Average power output of ultrafast Yb:YAG cryogenic laser system as a function of 940 nm pump power for amplifier 1 only () and amplifier 1 + amplifier 2 operation (), and for an average fiber laser input average power of 55 mW.

Fig. 15
Fig. 15

CW Yb:YAG cryogenic laser system details.

Fig. 16
Fig. 16

Oscillator only () and oscillator-amplifier () CW output power at 1029 nm as a function of 940 nm pump power.

Fig. 17
Fig. 17

Ultrafast Yb:YAG cryogenic laser system details.

Fig. 18
Fig. 18

Measured spectra of Fianium FM-1030-0.1-CST mode-locked fiber laser for 25 (), 50 (), 75 (), and 90 mW () average power output. Superimposed on the output spectra is the Yb:YAG emission cross-section profile at 70 K.

Fig. 19
Fig. 19

Yb:YAG emission cross-section spectrum at 70 ( ), 100 ( ), and 130 K ( ).

Fig. 21
Fig. 21

Spectra at the output of the double-passed preamplifier, at 0.48 W output power ( ) and 34 W output power ( ).

Fig. 22
Fig. 22

Spectra at the output of the single-passed power amplifier for average powers of 341W( ), 470W( ), and 600W( ).

Fig. 23
Fig. 23

FWHM pulsewidth as a function of ultrafast average power output for assumed Gaussian and sech2 pulse shapes. The Gaussian pulse shape is denoted by () and the sech2 pulse shape by (). Data is derived from Femtochrome Model FR-103HS autocorrelator measurements.

Fig. 24
Fig. 24

Output beam profile at 500 W of ultrafast average power.

Fig. 25
Fig. 25

Pulse train obtained at output of single-passed Yb:YAG power amplifier, at a repetition rate of 50 MHz and and an average power of 493 W.

Fig. 26
Fig. 26

Second harmonic (514.5 nm) output average power as a function of input infrared (1029 nm) average power from a NCPM LBO crystal.

Fig. 27
Fig. 27

Transverse beam profile of the second harmonic beam for 60 W of output power.

Tables (4)

Tables Icon

Table 1 Thermal Conductivity Fitting Constants For Yb:YAG

Tables Icon

Table 2 Fitting Constants for YAG Thermal Expansion and Thermo-Optic Coefficient

Tables Icon

Table 3 Thermal Conductivity Fitting Constants For Sapphire (Al2O3)

Tables Icon

Table 4 Fitting Constants for Absorption in Yb:YAG Disk at 75 K

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

k ( T ) = a ( ln ( b T ) ) c d T ,
α ( T ) = ( e T 2 + f T + g ) 10 6 ,
β ( T ) = ( h T 2 + i T + j ) 10 6 .
A ( λ 0 , Δ λ , D ) = 1 2 Δ λ [ ln ( 2 ) π ] 1 / 2 ( exp ( 4 ln ( 2 ) [ λ λ 0 ] 2 [ λ λ 0 Δ λ ] 2 ) exp ( σ a ( λ ) D ) d λ .
A ( z ) = 1 ( a e b z + c e d z + e e f z ) ,
Q h ( r , z ) = η h d I P d z = 2 P P η h π ω P 2 e 2 ( r ω P ) 2 ( a b e b z + c d e d z + f g e g z ) ,
I P ( r , z ) = I 0 P e 2 ( r ω P ) 2 T ( z ) = I 0 P e 2 ( r ω P ) 2 ( 1 A ( z ) ) ,
η h = 1 λ P λ L ,
( k ( T ) T ) + Q h = 0 ,
N ( r ) = 1 λ L 0 L y β Δ T ( ( r , z ) d z ,

Metrics