Abstract

We demonstrate the switching of a silicon nitride micro ring resonator (MRR) by using digital microfluidics (DMF). Our platform allows driving micro-droplets on-chip, providing control over the effective refractive index at the vicinity of the resonator and thus facilitating the manipulation of the transmission spectrum of the MRR. The device is fabricated using a process that is compatible with high-throughput silicon fabrication techniques with buried highly doped silicon electrodes. This platform can be extended towards controlling arrays of micro optical devices using minute amounts of liquid droplets. Such an integration of DMF and optical resonators on chip can be used in variety of applications, ranging from biosensing and kinetics to tunable filtering on chip.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
    [CrossRef]
  2. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
    [CrossRef] [PubMed]
  3. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
    [CrossRef] [PubMed]
  4. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
    [CrossRef]
  5. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
    [CrossRef]
  6. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
    [CrossRef] [PubMed]
  7. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
    [CrossRef] [PubMed]
  8. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  9. L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
    [CrossRef]
  10. L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt. Express 13(22), 9003–9013 (2005).
    [CrossRef] [PubMed]
  11. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
    [CrossRef] [PubMed]
  12. M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007).
    [CrossRef] [PubMed]
  13. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
    [CrossRef] [PubMed]
  14. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  15. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  16. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
    [CrossRef]
  17. R. Shamai and U. Levy, “On chip tunable micro ring resonator actuated by electrowetting,” Opt. Express 17(2), 1116–1125 (2009).
    [CrossRef] [PubMed]
  18. M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
    [CrossRef]
  19. M. Abdelgawad and A. R. Wheeler, “The Digital Revolution: A New Paradigm for Microfluidics,” Adv. Mater. 21(8), 920–925 (2009).
    [CrossRef]
  20. R. B. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?” Microfluid. Nanofluid. 3(3), 245–281 (2007).
    [CrossRef]
  21. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef]
  22. I. Goykhman, B. Desiatov, and U. Levy, “Ultra-thin silicon nitride microring resonator for biophotonic applications,” Appl. Phys. Lett. 97(8), 0811081–0811083 (2010).
    [CrossRef]

2010 (1)

I. Goykhman, B. Desiatov, and U. Levy, “Ultra-thin silicon nitride microring resonator for biophotonic applications,” Appl. Phys. Lett. 97(8), 0811081–0811083 (2010).
[CrossRef]

2009 (2)

M. Abdelgawad and A. R. Wheeler, “The Digital Revolution: A New Paradigm for Microfluidics,” Adv. Mater. 21(8), 920–925 (2009).
[CrossRef]

R. Shamai and U. Levy, “On chip tunable micro ring resonator actuated by electrowetting,” Opt. Express 17(2), 1116–1125 (2009).
[CrossRef] [PubMed]

2008 (4)

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[CrossRef]

2007 (3)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

R. B. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?” Microfluid. Nanofluid. 3(3), 245–281 (2007).
[CrossRef]

M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007).
[CrossRef] [PubMed]

2006 (7)

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[CrossRef]

2005 (1)

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

2003 (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

2000 (1)

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[CrossRef]

Abdelgawad, M.

M. Abdelgawad and A. R. Wheeler, “The Digital Revolution: A New Paradigm for Microfluidics,” Adv. Mater. 21(8), 920–925 (2009).
[CrossRef]

Armani, A. M.

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Campbell, K.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[CrossRef]

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt. Express 13(22), 9003–9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Ultra-thin silicon nitride microring resonator for biophotonic applications,” Appl. Phys. Lett. 97(8), 0811081–0811083 (2010).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Emery, T.

Erickson, D.

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

Evans, R. D.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

Fainman, Y.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[CrossRef]

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt. Express 13(22), 9003–9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

Fair, R. B.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

R. B. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?” Microfluid. Nanofluid. 3(3), 245–281 (2007).
[CrossRef]

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[CrossRef]

Gersborg-Hansen, M.

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Ultra-thin silicon nitride microring resonator for biophotonic applications,” Appl. Phys. Lett. 97(8), 0811081–0811083 (2010).
[CrossRef]

Groisman, A.

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[CrossRef]

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt. Express 13(22), 9003–9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Heng, X.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

Jokerst, N. M.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

Kristensen, A.

M. Gersborg-Hansen and A. Kristensen, “Tunability of optofluidic distributed feedback dye lasers,” Opt. Express 15(1), 137–142 (2007).
[CrossRef] [PubMed]

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Ultra-thin silicon nitride microring resonator for biophotonic applications,” Appl. Phys. Lett. 97(8), 0811081–0811083 (2010).
[CrossRef]

R. Shamai and U. Levy, “On chip tunable micro ring resonator actuated by electrowetting,” Opt. Express 17(2), 1116–1125 (2009).
[CrossRef] [PubMed]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[CrossRef]

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[CrossRef]

L. Pang, U. Levy, K. Campbell, A. Groisman, and Y. Fainman, “Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device,” Opt. Express 13(22), 9003–9013 (2005).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

Li, Z.

Luan, L.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

Mandal, S.

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Mookherjea, S.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[CrossRef]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Pang, L.

Pollack, M. G.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[CrossRef]

Psaltis, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett. 31(1), 59–61 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express 14(22), 10494–10499 (2006).
[CrossRef] [PubMed]

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Rockwood, T.

Scherer, A.

Shamai, R.

Shenderov, A. D.

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[CrossRef]

Sternberg, P. W.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

Vahala, K. J.

Wheeler, A. R.

M. Abdelgawad and A. R. Wheeler, “The Digital Revolution: A New Paradigm for Microfluidics,” Adv. Mater. 21(8), 920–925 (2009).
[CrossRef]

Yang, C.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yaqoob, Z.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

Zamek, S.

Zhang, Z.

Adv. Mater. (1)

M. Abdelgawad and A. R. Wheeler, “The Digital Revolution: A New Paradigm for Microfluidics,” Adv. Mater. 21(8), 920–925 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch,” Appl. Phys. Lett. 85(25), 6119–6121 (2004).
[CrossRef]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[CrossRef]

I. Goykhman, B. Desiatov, and U. Levy, “Ultra-thin silicon nitride microring resonator for biophotonic applications,” Appl. Phys. Lett. 97(8), 0811081–0811083 (2010).
[CrossRef]

M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett. 77(11), 1725–1726 (2000).
[CrossRef]

IEEE Sens. J. (1)

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

J. Micromech. Microeng. (1)

B. Helbo, A. Kristensen, and A. Menon, “A micro-cavity fluidic dye laser,” J. Micromech. Microeng. 13(2), 307–311 (2003).
[CrossRef]

Lab Chip (1)

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (2)

R. B. Fair, “Digital microfluidics: Is a true lab-on-a-chip possible?” Microfluid. Nanofluid. 3(3), 245–281 (2007).
[CrossRef]

U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid. 4(1-2), 97–105 (2008).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Supplementary Material (3)

» Media 1: MPEG (558 KB)     
» Media 2: MPEG (3806 KB)     
» Media 3: MPEG (1302 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Frame excerpts from Media 1. A schematic diagram showing the concept of microring resonator switching using digital microfluidics. Left – the droplet does not interact with the microring resonator. Right – voltage is applied; the droplet covers the microring resonator and modifies its properties.

Fig. 2
Fig. 2

Schematic description of the fabrication process. (a) Base material- highly doped SOI chip. (b) DMF’s electrodes are patterned by photolithography and transferred to the highly doped silicon layer by RIE. (c) Oxidation step insulates the electrodes from the top surrounding. (d) The photonic device substrate. (e) Silicon-Nitride layer is deposited by LPCVD. (f) Waveguides and MRR are patterned by Electron-Beam lithography, followed by nitride RIE.

Fig. 3
Fig. 3

(a) A micrograph of a complete device showing the electrodes layout. (b) Zoom in on the area denoted by the red lines. The waveguides, microrings and central electrodes can be clearly observed. (c) SEM cross section view of the electrode, showing the silicon and the thermal oxide layer. (d) SEM top view on the silicon-nitride MRR before being covered by Cytop layer.

Fig. 4
Fig. 4

Experimental setup (top plate removed for visualization purposes). The lensed fibers are butt coupled to the waveguides. The DMF pads are wire bonded to the carrier pads to facilitate the connection to an external voltage source.

Fig. 5
Fig. 5

Frame excerpt from Media 2. The media shows the translation of the droplet over the electrodes structure in real time.

Fig. 6
Fig. 6

Optical characterization results of our device. (a) Transmission versus wavelength with the droplet covers the MRR (blue) and with the droplet shifted away of the MRR (black). (b). Cross section geometry of the simulated structure. The refractive index of each layer is given. The Cytop profile was verified by AFM and the waveguide core profile was verified by SEM. (c) Optical mode profile calculated by finite element method. The effective refractive indices with air/water cladding are shown above; indicate an effective index difference of 0.033. (d) Waveguide transmission vs. time, showing a ~1 millisecond time response.

Fig. 7
Fig. 7

Frame excerpts from Media 3. The media shows the real time operation of the device. The droplet moves into/out the MRR top, bringing the MRR to/from resonance, which can be clearly seen at the media. (a) The droplet does not cover the MRR, resonance condition is obtained. The output signal is weak. Light scattering from the MRR can be observed. (b) The droplet moves and cover the MRR which is now not in resonance. As a result, stronger output signal is observed. Light scattering from the MRR can be no longer observed.

Metrics