Abstract

We demonstrated a novel selective chemical sensing approach by incorporating a poly(dimethylsiloxane) (PDMS)-coated fiber Bragg grating (FBG) structure for optically detecting various volatile organic compounds (VOC’s). When the proposed structure is exposed to a nonpolar solvent, a tensile stress is induced between the coated PDMS and the optical fiber by a VOC-dependent swelling effect of the PDMS, which results in a Bragg wavelength shift dependent on the concentration and the type of VOC’s. Because of no need of an etching process of a fiber cladding, the proposed PDMS-coated FBG can be used as a simple, convenient, and durable chemical sensing element with a high sensitivity, compared with conventional FBG sensors requiring an evanescent wave coupling.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  2. A. Othonos, and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, (Boston: Artech House, 1999).
  3. Y. J. Rao, “Recent progress in applications of in-fiber Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
    [CrossRef]
  4. L. Zhang, W. Zhang, and I. Bennion, “In-fiber graing optic sensors” in Fiber Optics Sensors (New York: Dekker, Chaper 4, 2002).
  5. X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
    [CrossRef]
  6. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  7. X. Shu and D. X. Huang, “High sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm period fiber grating,” Opt. Commun. 171(1-3), 65–69 (1999).
    [CrossRef]
  8. X. Shu, X. L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [CrossRef]
  9. J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
    [CrossRef]
  10. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
  11. K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
  12. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
    [CrossRef]
  13. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
    [CrossRef]
  14. R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
  15. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [CrossRef]
  16. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
    [CrossRef]
  17. D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009).
    [CrossRef] [PubMed]
  18. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
    [CrossRef] [PubMed]
  19. M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
    [CrossRef]
  20. J. Hildebrand, and R. L. Scott, The solubility of Nonelectrolytes, (New York: Reinhold, 1950).
  21. C. M. Hansen, Hasen solubility parameter: a user’s hand book, (Florida: CRC Press 2000).
  22. S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
    [CrossRef]
  23. T. Young, and D. Hugh, University Physics, (7th Ed., Addison Wesley, 1992).
  24. G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
    [CrossRef]
  25. F. P. Mallinder and B. A. Proctor, “Elastic constants of fused silica as a function of large tensile strain,” Phys. Chem. Glasses 2, 91–103 (1964).
  26. D. Armani, C. Liu, and N. Aluru, “Re-configurable Fluid Circuits by PDMS Elastomer Micromachining,” Proc. IEEE Int. Conf. Micro-Electro Mech. Syst. (17–21 January 1999), pp. 222–227.
  27. J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
    [CrossRef]
  28. A. Hajizadeh and M. A. Golkar, “Power flow control of grid-connected fuel cell distributed generation systems,” KIEE J. Electr. Eng. Tech. 3(2), 143–151 (2008).
    [CrossRef]
  29. H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008).
    [CrossRef]

2010 (1)

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

2009 (1)

2008 (3)

J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
[CrossRef]

A. Hajizadeh and M. A. Golkar, “Power flow control of grid-connected fuel cell distributed generation systems,” KIEE J. Electr. Eng. Tech. 3(2), 143–151 (2008).
[CrossRef]

H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008).
[CrossRef]

2005 (3)

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[CrossRef]

2004 (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

2003 (2)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[CrossRef] [PubMed]

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

2002 (1)

2001 (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
[CrossRef]

1999 (2)

X. Shu and D. X. Huang, “High sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm period fiber grating,” Opt. Commun. 171(1-3), 65–69 (1999).
[CrossRef]

Y. J. Rao, “Recent progress in applications of in-fiber Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1996 (1)

1991 (1)

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

1990 (1)

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

1964 (1)

F. P. Mallinder and B. A. Proctor, “Elastic constants of fused silica as a function of large tensile strain,” Phys. Chem. Glasses 2, 91–103 (1964).

Andreev, A.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Barnes, J. A.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

Bennion, I.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

X. Shu, X. L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[CrossRef]

Berg, J. M.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Bhatia, V.

Bhattacharya, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Brown, R. S.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

Campopiano, S.

D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009).
[CrossRef] [PubMed]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[CrossRef]

Chen, X.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

Cheung, A. H.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

Chisholm, K.

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

Choe, G.-Y.

H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008).
[CrossRef]

Cusano, A.

D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009).
[CrossRef] [PubMed]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[CrossRef]

Datta, A.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Dreher, M. A.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

Ecke, W.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
[CrossRef]

Felmeri, I.

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Gangopadhyay, S.

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

Garbassi, F.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

Gillooly, A.

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[CrossRef]

Golkar, M. A.

A. Hajizadeh and M. A. Golkar, “Power flow control of grid-connected fuel cell distributed generation systems,” KIEE J. Electr. Eng. Tech. 3(2), 143–151 (2008).
[CrossRef]

Hajizadeh, A.

A. Hajizadeh and M. A. Golkar, “Power flow control of grid-connected fuel cell distributed generation systems,” KIEE J. Electr. Eng. Tech. 3(2), 143–151 (2008).
[CrossRef]

Huang, D. X.

X. Shu and D. X. Huang, “High sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm period fiber grating,” Opt. Commun. 171(1-3), 65–69 (1999).
[CrossRef]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Humphrey, P.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

Hur, J.

H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008).
[CrossRef]

Iadicicco, A.

D. Paladino, A. Iadicicco, S. Campopiano, and A. Cusano, “Not-lithographic fabrication of micro-structured fiber Bragg gratings evanescent wave sensors,” Opt. Express 17(2), 1042–1054 (2009).
[CrossRef] [PubMed]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[CrossRef]

Ishihara, K.

J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
[CrossRef]

Johnson, D.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

Kang, H.-S.

H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Konno, T.

J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Le Blanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lee, B.-K.

H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008).
[CrossRef]

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[CrossRef] [PubMed]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Loock, H.-P.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

Mackey, G.

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

Mallinder, F. P.

F. P. Mallinder and B. A. Proctor, “Elastic constants of fused silica as a function of large tensile strain,” Phys. Chem. Glasses 2, 91–103 (1964).

Marola, R.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

Matsuno, R.

J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
[CrossRef]

Meltz, G.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

Morey, W. W.

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

Morra, M.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

Mueller, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
[CrossRef]

Occhiello, E.

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

Paladino, D.

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[CrossRef] [PubMed]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Proctor, B. A.

F. P. Mallinder and B. A. Proctor, “Elastic constants of fused silica as a function of large tensile strain,” Phys. Chem. Glasses 2, 91–103 (1964).

Rao, Y. J.

Y. J. Rao, “Recent progress in applications of in-fiber Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[CrossRef]

Schroeder, K.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
[CrossRef]

Seo, J.-H.

J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
[CrossRef]

Shu, X.

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

X. Shu, X. L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[CrossRef]

X. Shu and D. X. Huang, “High sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm period fiber grating,” Opt. Commun. 171(1-3), 65–69 (1999).
[CrossRef]

Sugden, K.

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

Takai, M.

J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
[CrossRef]

Vengsarkar, A. M.

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[CrossRef] [PubMed]

Willsch, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Zhang, L.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

Zhang, X. L.

Zhou, K.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

Anal. Chem. (1)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

X. Shu, K. Chisholm, I. Felmeri, K. Sugden, A. Gillooly, L. Zhang, and I. Bennion, “Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings,” Appl. Phys. Lett. 83(15), 3003–3005 (2003).
[CrossRef]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “High sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[CrossRef]

Biomaterials (1)

J.-H. Seo, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, “Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling--deswelling methods with phospholipids moiety containing ABA-type block copolymers,” Biomaterials 29(10), 1367–1376 (2008).
[CrossRef]

Electron. Lett. (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-Sensitivity optical chemsensor or based on eteched D-fiber Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Refractive Index Sensor Based on Microsturctured Fiber Bragg Grating,” IEEE Photon. Technol. Lett. 17(6), 1250–1252 (2005).
[CrossRef]

J. Colloid Interface Sci. (1)

M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, and D. Johnson, “On the aging of oxygen plasma-treated polydimethylsiloxane surfaces,” J. Colloid Interface Sci. 137(1), 11–24 (1990).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Le Blanc, K. P. Koo, C. G. Askins, M. A. Davis, and E. J. Friebele, “Fiber graing sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

X. Shu, X. L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on Surface Wettability of Poly(Dimethyl)Siloxane (PDMS) and Glass Under Oxygen-Plasma Treatment and Correlation With Bond Strength,” J. Microelectromech. Syst. 14(3), 590–597 (2005).
[CrossRef]

KIEE J. Electr. Eng. Tech. (2)

A. Hajizadeh and M. A. Golkar, “Power flow control of grid-connected fuel cell distributed generation systems,” KIEE J. Electr. Eng. Tech. 3(2), 143–151 (2008).
[CrossRef]

H.-S. Kang, G.-Y. Choe, B.-K. Lee, and J. Hur, “A feasibility design of PEMFC parallel operation for a fuel cell generation system,” KIEE J. Electr. Eng. Tech. 3(3), 408–421 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12(7), 757–764 (2001).
[CrossRef]

Opt. Commun. (1)

X. Shu and D. X. Huang, “High sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm period fiber grating,” Opt. Commun. 171(1-3), 65–69 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

Y. J. Rao, “Recent progress in applications of in-fiber Bragg grating sensors,” Opt. Lasers Eng. 31(4), 297–324 (1999).
[CrossRef]

Opt. Lett. (1)

Phys. Chem. Glasses (1)

F. P. Mallinder and B. A. Proctor, “Elastic constants of fused silica as a function of large tensile strain,” Phys. Chem. Glasses 2, 91–103 (1964).

Proc. SPIE (1)

G. Meltz and W. W. Morey, “Bragg grating formation and germanosilicate fiber photosensitivity,” Proc. SPIE 1516, 185–199 (1991).
[CrossRef]

Sens. Act. B Chem. (1)

J. A. Barnes, R. S. Brown, A. H. Cheung, M. A. Dreher, G. Mackey, and H.-P. Loock, “Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy,” Sens. Act. B Chem. 148(1), 221–226 (2010).
[CrossRef]

Other (9)

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proc. SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.

L. Zhang, W. Zhang, and I. Bennion, “In-fiber graing optic sensors” in Fiber Optics Sensors (New York: Dekker, Chaper 4, 2002).

A. Othonos, and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, (Boston: Artech House, 1999).

R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.

D. Armani, C. Liu, and N. Aluru, “Re-configurable Fluid Circuits by PDMS Elastomer Micromachining,” Proc. IEEE Int. Conf. Micro-Electro Mech. Syst. (17–21 January 1999), pp. 222–227.

T. Young, and D. Hugh, University Physics, (7th Ed., Addison Wesley, 1992).

J. Hildebrand, and R. L. Scott, The solubility of Nonelectrolytes, (New York: Reinhold, 1950).

C. M. Hansen, Hasen solubility parameter: a user’s hand book, (Florida: CRC Press 2000).

Supplementary Material (4)

» Media 1: JPG (2891 KB)     
» Media 2: JPG (1645 KB)     
» Media 3: JPG (334 KB)     
» Media 4: JPG (1711 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The schematic illustration of the PDMS-coated FBG device exposed to the nonpolar solvents. (Media 1)

Fig. 2
Fig. 2

(a) Time evolution of the transmission spectra of the PDMS-coated FBG at the exposure of the acetone; (b) Temporal evolution of the Bragg wavelength shift of the PDMS-coated FBG sensor during the acetone infiltration; (c) time evolution of the transmission spectra during the acetone volatilization; (d) temporal evolution of the Bragg wavelength shift during the acetone volatilization. (Media 2)

Fig. 3
Fig. 3

(a) Transmission spectra of the PDMS-coated FBG (A p = 2.25 mm2) at different VOC’s; (b) ΔλB at different VOC’s depending on the cross-section area of the coated PDMS, where the dots and the lines denote the measured results and the simulation results from Eq. (8), respectively. (Media 3)

Fig. 4
Fig. 4

ΔλB of the PDMS-coated FBG sensor as a function of the concentration ratio (the relative volume ratio) of the VOC binary mixture (acetone diluted with methanol), where ΔCH denotes the relative volume ratio of acetone in the mixture. The dots and the lines denote the experimental results and the simulation results from Eq. (9), respectively. (Media 4)

Tables (1)

Tables Icon

Table 1 Swelling ratios of PDMS and Hansen solubility parameters.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ = δ d 2 + δ p 2 + δ h 2
S v o c = ( L + Δ L p ) / L ,
F p F f Δ L = F p Δ L ,
k p Δ L p k f Δ L = k p Δ L
Δ L = k p k p + k f Δ L p ,
Δ L = A p E p / L p ( A p E p / L p ) + ( A f E f / L f ) Δ L p .
Δ L L = A p E p A p E p + A f E f ( S v o c 1 ) .
Δ λ B = λ B ( 1 P e ) ε C H = λ B ( 1 P e ) Δ L L ,
Δ λ B = λ B ( 1 P e ) { A p E p ( A p E p + A f E f ) ( S v o c 1 ) } .
Δ λ B = λ B ( 1 P e ) [ A p E p ( A p E p + A f E f ) { ( S V O C 1 1 ) Δ C H + ( S V O C 2 1 ) ( 1 Δ C H ) } ]
= λ B ( 1 P e ) [ A p E p ( A p E p + A f E f ) { ( S V O C 1 S V O C 2 ) Δ C H + S V O C 2 1 } ] ,

Metrics