Abstract

We present a novel design method and sensing scheme for an electro-optic field probe using multi-stratified layers of electro-optic wafers. A serial stack of cascaded layers is found to be capable of enhancing the performance of interferometric electro-optic light modulation that utilizes the slopes of interference fringe patterns and field-induced electro-optic phase retardations within wafers. The absolute sensitivity of the probe is also characterized with a micro-TEM cell that generates electric fields distributions with accurate, calculable strength for use in probe calibration. The sensitivity of a multi-layered probe-per unit electro-optic wafer volume - was enhanced by 6 dB compared to that of a single-layer one.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
    [CrossRef]
  2. J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
    [CrossRef]
  3. M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
    [CrossRef]
  4. S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
    [CrossRef]
  5. D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth,” Meas. Sci. Technol. 19(11), 115301 (2008).
    [CrossRef]
  6. D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008).
    [CrossRef] [PubMed]
  7. O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005).
    [CrossRef]
  8. D. L. Quang, D. Erasme, and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electron. Lett. 29(5), 498–499 (1993).
    [CrossRef]
  9. A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997).
    [CrossRef]
  10. P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999).
    [CrossRef]
  11. S. M. Chandani, “Fiber-Based Probe for Electrooptic Sampling,” IEEE Photon. Technol. Lett. 18(12), 1290–1292 (2006).
    [CrossRef]
  12. A. B. Buckman, “Effective electro-optic coefficient of multilayer dielectric waveguides modulation enhancement,” J. Opt. Soc. Am. 66(1), 30–33 (1976).
    [CrossRef]
  13. D. J. Lee and J. F. Whitaker, “Analysis of Optical and Terahertz Multilayer Systems Using Microwave and Feedback Theory,” Microw. Opt. Technol. Lett. 51(5), 1308–1312 (2009).
    [CrossRef]
  14. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, “Electro-optic coefficients of lithium tantalite at near-infrared wavelengths,” J. Opt. Soc. Am. B 21, 1948–1952 (2004).
    [CrossRef]
  15. A. Yariv, and P. Yeh, Optical Waves in Crystals. (New York: Wiley, 1984), chap. 8.
  16. M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16(4), 189–195 (1974).
    [CrossRef]
  17. N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
    [CrossRef]
  18. D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010).
    [CrossRef]
  19. C. C. Chen and J. F. Whitaker, “An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride,” Opt. Express 18(12), 12239–12248 (2010).
    [CrossRef] [PubMed]
  20. E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
    [CrossRef]

2010 (2)

2009 (3)

D. J. Lee and J. F. Whitaker, “Analysis of Optical and Terahertz Multilayer Systems Using Microwave and Feedback Theory,” Microw. Opt. Technol. Lett. 51(5), 1308–1312 (2009).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

2008 (3)

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth,” Meas. Sci. Technol. 19(11), 115301 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008).
[CrossRef] [PubMed]

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

2006 (1)

S. M. Chandani, “Fiber-Based Probe for Electrooptic Sampling,” IEEE Photon. Technol. Lett. 18(12), 1290–1292 (2006).
[CrossRef]

2005 (1)

O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005).
[CrossRef]

2004 (1)

2000 (1)

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

1999 (1)

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999).
[CrossRef]

1998 (1)

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

1997 (1)

A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997).
[CrossRef]

1993 (2)

J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
[CrossRef]

D. L. Quang, D. Erasme, and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electron. Lett. 29(5), 498–499 (1993).
[CrossRef]

1976 (1)

1974 (1)

M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16(4), 189–195 (1974).
[CrossRef]

Alleston, S. B.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999).
[CrossRef]

Arai, K. I.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Arakawa, S.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Buckman, A. B.

Casson, J. L.

Chandani, S. M.

S. M. Chandani, “Fiber-Based Probe for Electrooptic Sampling,” IEEE Photon. Technol. Lett. 18(12), 1290–1292 (2006).
[CrossRef]

Chen, C. C.

Crawford, M. L.

M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16(4), 189–195 (1974).
[CrossRef]

Crites, M. H.

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth,” Meas. Sci. Technol. 19(11), 115301 (2008).
[CrossRef]

David, G.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Dudley, R.

A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997).
[CrossRef]

Erasme, D.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999).
[CrossRef]

D. L. Quang, D. Erasme, and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electron. Lett. 29(5), 498–499 (1993).
[CrossRef]

Gahagan, K. T.

Gasparyan, A.

O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005).
[CrossRef]

Gopalan, V.

Hassan, M. A.

A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997).
[CrossRef]

Hoshino, S.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Huyart, B.

D. L. Quang, D. Erasme, and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electron. Lett. 29(5), 498–499 (1993).
[CrossRef]

Iwanami, M.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Jain, R. K.

Kang, J. S.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kang, N. W.

D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010).
[CrossRef]

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kang, T. W.

Katehi, L. P. B.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Kim, D. C.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kim, J.

J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
[CrossRef]

Kim, J. H.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Kishi, M.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

Kwon, J. Y.

Lee, D. J.

D. J. Lee, N. W. Kang, J. Y. Kwon, and T. W. Kang, “Field-calibrated electro-optic probe using interferometric modulations,” J. Opt. Soc. Am. B 27(2), 318–322 (2010).
[CrossRef]

D. J. Lee and J. F. Whitaker, “Analysis of Optical and Terahertz Multilayer Systems Using Microwave and Feedback Theory,” Microw. Opt. Technol. Lett. 51(5), 1308–1312 (2009).
[CrossRef]

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth,” Meas. Sci. Technol. 19(11), 115301 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008).
[CrossRef] [PubMed]

Lee, J. G.

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

Mitani, S.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Mitrofanov, O.

O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005).
[CrossRef]

Mueller, P. O.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999).
[CrossRef]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

Nees, J.

J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
[CrossRef]

Ota, H.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Park, H.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Pfeiffer, L. N.

O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005).
[CrossRef]

Quang, D. L.

D. L. Quang, D. Erasme, and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electron. Lett. 29(5), 498–499 (1993).
[CrossRef]

Robertson, S.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Robinson, J. M.

Sander, R. K.

Sato, R.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Scrymgeour, D. A.

Suzuki, E.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Takahashi, M.

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

Tesser, R.

A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997).
[CrossRef]

Tsuchiya, M.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Vickers, A. J.

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999).
[CrossRef]

A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997).
[CrossRef]

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

Wakana, S.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
[CrossRef]

West, K. W.

O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005).
[CrossRef]

Whitaker, J. F.

C. C. Chen and J. F. Whitaker, “An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride,” Opt. Express 18(12), 12239–12248 (2010).
[CrossRef] [PubMed]

D. J. Lee and J. F. Whitaker, “Analysis of Optical and Terahertz Multilayer Systems Using Microwave and Feedback Theory,” Microw. Opt. Technol. Lett. 51(5), 1308–1312 (2009).
[CrossRef]

D. J. Lee and J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16(26), 21587–21597 (2008).
[CrossRef] [PubMed]

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth,” Meas. Sci. Technol. 19(11), 115301 (2008).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
[CrossRef]

Williamson, S.

J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
[CrossRef]

Yamazaki, E.

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

Yang, K.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

J. Kim, S. Williamson, J. Nees, S. Wakana, and J. F. Whitaker, “Photoconductive sampling probe with 2.3-ps temporal resolution and 4-µV sensitivity,” Appl. Phys. Lett. 62(18), 2268–2270 (1993).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95(4), 041112 (2009).
[CrossRef]

O. Mitrofanov, A. Gasparyan, L. N. Pfeiffer, and K. W. West, “Electro-optic effect in an unbalanced AlGaAs/GaAs microresonator,” Appl. Phys. Lett. 86(20), 202103 (2005).
[CrossRef]

Electron. Lett. (1)

D. L. Quang, D. Erasme, and B. Huyart, “Fabry-Perot enhanced real-time electro-optic probing of MMICs,” Electron. Lett. 29(5), 498–499 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. O. Mueller, S. B. Alleston, A. J. Vickers, and D. Erasme, “An External Electrooptic Sampling Technique Based on the Fabry–Perot Effect,” IEEE J. Quantum Electron. 35(1), 7–11 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. M. Chandani, “Fiber-Based Probe for Electrooptic Sampling,” IEEE Photon. Technol. Lett. 18(12), 1290–1292 (2006).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

M. L. Crawford, “Generation of standard electromagnetic fields using TEM transmission cells,” IEEE Trans. Electromagn. Compat. 16(4), 189–195 (1974).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

N. W. Kang, J. S. Kang, D. C. Kim, J. H. Kim, and J. G. Lee, “Charcterization Method of Electric Field Probe by Using Transfer Standard in GTEM Cell,” IEEE Trans. Instrum. Meas. 58(4), 1109–1113 (2009).
[CrossRef]

E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Meas. 57(5), 1014–1022 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits,” IEEE Trans. Microw. Theory Tech. 46(12), 2338–2343 (1998).
[CrossRef]

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, “Fiber-Edge Electrooptic/Magnetooptic Probe for Spectral-Domain Analysis of Electromagnetic Field,” IEEE Trans. Microw. Theory Tech. 48(12), 2611–2616 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (1)

D. J. Lee, M. H. Crites, and J. F. Whitaker, “Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth,” Meas. Sci. Technol. 19(11), 115301 (2008).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

D. J. Lee and J. F. Whitaker, “Analysis of Optical and Terahertz Multilayer Systems Using Microwave and Feedback Theory,” Microw. Opt. Technol. Lett. 51(5), 1308–1312 (2009).
[CrossRef]

Opt. Express (2)

Opt. Quantum Electron. (1)

A. J. Vickers, R. Tesser, R. Dudley, and M. A. Hassan, “Fabry-Perot enhancement electro-optic sampling,” Opt. Quantum Electron. 29(6), 661–669 (1997).
[CrossRef]

Other (1)

A. Yariv, and P. Yeh, Optical Waves in Crystals. (New York: Wiley, 1984), chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical N-layer system with arbitrary refractive indices and thicknesses for the constituent layers. The light incidence is from the left. The layers are numbered starting from the right with layers 1 and 2, an arbitrary intermediate layer k is in the middle, and the last layer (N) is on the left.

Fig. 2
Fig. 2

Structure of a multi-layered electro-optic probe (Layers 1 and 3 are thin LiTaO3 that yield phase modulations δ1 and δ3 ).

Fig. 3
Fig. 3

Simulated reflectance fringes of the probe in Fig. 2.

Fig. 4
Fig. 4

Simulated reflectance fringes and corresponding EO strength for the probe in Fig. 2. (a) h1 = h3 = 50 μm, h2 = 10 μm, n1 = n3 = ne (b) h1 = 100 μm, h2 = 0 μm, n1 = ne . (The right vertical axis is the reflectance change over 0.01% of refractive-index modulation).

Fig. 5
Fig. 5

Measured reflectance fringes for the probe in Fig. 2.

Fig. 6
Fig. 6

Experimental schematic for an all-fiber-based EO-probe calibration system. (The gray and black lines are optical fibers and electrical connections, respectively).

Fig. 7
Fig. 7

Reflectance fringes (dashed lines) and corresponding EO strength (solid lines) for the probe in Fig. 2. (a) h1 ~h3~50 μm, h2~2 μm, n1 = n3 = ne case; (b) same as (a) except n1 = n3 = no ; (c) same as (a) but h1 ~100 μm only.

Fig. 8
Fig. 8

Measured EO signal strength (black) and calculated electric field strength (gray) in the μ-TEM cell versus feeding power. (This relates the measured signals and the calculated fields). The interconnecting lines are guides to the eye.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R ( N ) =r N+1 + ( t N+1 ) 2 R ( N-1 ) e N 1+r N+1 R ( N-1 ) e N ,
R ( N - 1 ) r N + ( t N ) 2 R ( N - 2 ) e i δ N - 1 1 + r N R ( N - 2 ) e i δ N - 1 ,    R ( 1 ) r 2 + ( t 2 ) 2 r 1 e i δ 1 1 + r 2 r 1 e i δ 1 ,
δ 1 = 4 π n 1 h 1 λ , δ 2 = 4 π n 2 h 2 λ ,   ...   , δ N = 4 π n N h N λ ,
r k = n k - n k - 1 n k + n k - 1 ,   t k = 1 - r k 2 , k = 1 , 2 ,   ...   , N + 1.
T N ( 1 ) = t 1 T ( 2 ) 1+r 2 r 1 e 1 ,
T ( 2 ) = t 2 T ( 3 ) 1+r 3 R ( 1 ) e 2 ...  ,T ( N ) = t N t N+1 1+r N+1 R ( N-1 ) e N .
T 3 ( 1 ) = t 4 t 3 t 2 t 1 1- ( first+second+third ) order feedback terms ,
- ( r 1 r 2 e 1 +r 2 r 3 e 2 +r 3 r 4 e 3 ) ,
- ( r 1 r 3 e i ( δ 1 2 ) +r 2 r 4 e i ( δ 2 3 ) +r 1 r 2 r 3 r 4 e i ( δ 1 3 ) ) ,
- ( r 4 r 1 e i ( δ 1 2 3 ) ) .

Metrics