Abstract

A supercontinuum spanning over 700 nm with an average spectral power of 1.7 mW/nm and flatness of 6 dB was produced in a solid core, double zero dispersion wavelength photonic crystal fiber pumped with a high power, continuous-wave ytterbium fiber laser. The spectrum displays a strong feature centered around 1980 nm. Through numerical simulations we demonstrate that this feature is initially generated through the shedding of Cherenkov radiation by solitons at the second zero dispersion wavelength, and then extended by a four-wave mixing process between this generated dispersive component and other solitons forming the continuum.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Travers, Continuous wave supercontinuum generation (Cambridge University Press, 2010), chap. 8.
  2. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
    [CrossRef] [PubMed]
  3. J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
    [CrossRef]
  4. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
    [CrossRef] [PubMed]
  5. A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92 (2008).
    [CrossRef]
  6. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
    [CrossRef] [PubMed]
  7. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “Towards visible CW pumped supercontinua,” Opt. Lett. 33, 2122–2124 (2008).
    [CrossRef] [PubMed]
  8. A. Kudlinski and A. Mussot, “Visible CW-pumped supercontinuum,” Opt. Lett. 33, 2407–2409 (2008).
    [CrossRef] [PubMed]
  9. A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
    [CrossRef]
  10. J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
    [CrossRef] [PubMed]
  11. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers” Opt. Lett. 34, 3631–3633 (2009).
    [CrossRef] [PubMed]
  12. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quant. Electron. 23, 1938–1946 (1987).
    [CrossRef]
  13. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10, 1151–1160 (2002).
    [PubMed]
  14. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
    [CrossRef] [PubMed]
  15. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [CrossRef]
  16. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [CrossRef] [PubMed]
  17. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [CrossRef] [PubMed]
  18. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [CrossRef] [PubMed]
  19. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
    [CrossRef]
  20. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
    [CrossRef] [PubMed]
  21. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
    [CrossRef] [PubMed]
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  23. D. V. Skryabin, F. Luan, J. C. Knight, and St. P. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  24. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
    [CrossRef]
  25. J. C. Travers, F. M. H., and D. J. M., Nonlinear fibre optics overview (Cambridge University Press, 2010), chap. 3.
  26. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
    [CrossRef] [PubMed]

2009 (3)

2008 (6)

2007 (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

2006 (2)

2005 (3)

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

2004 (2)

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[CrossRef] [PubMed]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

2003 (3)

A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and St. P. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

2002 (1)

2001 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quant. Electron. 23, 1938–1946 (1987).
[CrossRef]

Abeeluck, A. K.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Avdokhin, A. V.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quant. Electron. 23, 1938–1946 (1987).
[CrossRef]

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Bigot, L.

Bouwmans, G.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers” Opt. Lett. 34, 3631–3633 (2009).
[CrossRef] [PubMed]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92 (2008).
[CrossRef]

Coen, S.

Cumberland, B. A.

D. J. M.,

J. C. Travers, F. M. H., and D. J. M., Nonlinear fibre optics overview (Cambridge University Press, 2010), chap. 3.

Efimov, A.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

F. M. H.,

J. C. Travers, F. M. H., and D. J. M., Nonlinear fibre optics overview (Cambridge University Press, 2010), chap. 3.

Genty, G.

George, A. K.

González-Herráez, M.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

Goto, T.

Headley, C.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quant. Electron. 23, 1938–1946 (1987).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Jorgensen, C. G.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Knight, J. C.

Kudlinski, A.

Le Rouge, A.

Lehtonen, M.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and St. P. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Martin-Lopez, S.

Mélin, G.

Mussot, A.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers” Opt. Lett. 34, 3631–3633 (2009).
[CrossRef] [PubMed]

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92 (2008).
[CrossRef]

A. Kudlinski and A. Mussot, “Visible CW-pumped supercontinuum,” Opt. Lett. 33, 2407–2409 (2008).
[CrossRef] [PubMed]

Nicholson, J. W.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Nishizawa, N.

Omenetto, F. G.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Popov, S. V.

Quiquempois, Y.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers” Opt. Lett. 34, 3631–3633 (2009).
[CrossRef] [PubMed]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92 (2008).
[CrossRef]

Rulkov, A. B.

Russell, P.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Russell, St. P. J.

D. V. Skryabin, F. Luan, J. C. Knight, and St. P. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and St. P. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Stone, J. M.

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Taylor, J. R.

Travers, J. C.

Vanholsbeeck, F.

Vanvincq, O.

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quant. Electron. 23, 1938–1946 (1987).
[CrossRef]

Yan, M. F.

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Yulin, A. V.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quant. Electron. 23, 1938–1946 (1987).
[CrossRef]

Appl. Phys. B (1)

J. W. Nicholson, A. K. Abeeluck, C. Headley, M. F. Yan, and C. G. Jorgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett. 92 (2008).
[CrossRef]

Electron. Lett. (1)

A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett. 45, 29–30 (2009).
[CrossRef]

IEEE J. Quant. Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quant. Electron. 23, 1938–1946 (1987).
[CrossRef]

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[CrossRef]

Opt. Express (10)

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008).
[CrossRef] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14435–14447 (2008).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10, 1151–1160 (2002).
[PubMed]

J. C. Travers, “Blue solitary waves from infrared continuous wave pumping of optical fibers,” Opt. Express 17, 1502–1507 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (2)

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E 72, 016619 (2005).
[CrossRef]

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95, 213902 (2005).
[CrossRef] [PubMed]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and St. P. J. Russell, “Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Other (2)

J. C. Travers, F. M. H., and D. J. M., Nonlinear fibre optics overview (Cambridge University Press, 2010), chap. 3.

J. C. Travers, Continuous wave supercontinuum generation (Cambridge University Press, 2010), chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dispersion curves for both polarization axes of PCF, computed from SEM image of fiber cross section (inset, red bar indicates 5 μm scale)

Fig. 2
Fig. 2

Experimental set-up. Crosses indicate splices, fibers are as follows - LMA: large mode area fiber, SMF1: Corning HI-1060 single mode fiber, SMF2: Nufern small mode area single mode fiber

Fig. 3
Fig. 3

Output spectrum from 28 m length of PCF normalized to time averaged output power on logarithmic and linear (inset) scale. Black dotted lines indicates 6 dB of spectral flatness over the 1.08 μm to 1.82 μm region, red dashed line indicates ZDW

Fig. 4
Fig. 4

Evolution of continuum with fiber length. (a) Results from experimental cut back along fiber length. (b) Simulation results, averaged from an ensemble of 100 shots.

Fig. 5
Fig. 5

Phase-matching curves derived from dispersion curves in Fig. 1 showing the resonant wavelengths for solitons mixing with dispersive radiation at 1.98 μm on the fast (blue) and slow (green) axis

Fig. 6
Fig. 6

Spectrograms produced from simulations. A soliton initially sheds dispersive radiation across the ZDW (left). The interaction of a second soliton with the dispersive radiation leads to the generation of a new spectral component (right).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β ( ω ) = β ( ω cw ) + β sol ( ω ) β sol ( ω cw )
β ( ω ) = β ( ω cw ) + β sol ( ω ) + β sol ( ω cw ) .
β ( ω ) = β ( ω cw ) + β 1 ( ω sol ) [ ω ω cw ] .

Metrics