Abstract

An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10−8. The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Batshon, I. B. Djordjevic, and T. Schmidt, “Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation,” Opt. Express 18(19), 20546–20551 (2010).
    [CrossRef] [PubMed]
  2. H. G. Batshon, I. B. Djordjevic, L. Xu, and T. Wang, “Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond,” Opt. Express 18(13), 14108–14113 (2010).
    [CrossRef] [PubMed]
  3. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
    [CrossRef] [PubMed]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  5. C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
    [CrossRef] [PubMed]
  6. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt. 47(13), 2414–2429 (2008).
    [CrossRef] [PubMed]
  7. M. T. Gruneisen, W. A. Miller, R. C. Dymale, and A. M. Sweiti, “Holographic generation of complex fields with spatial light modulators: application to quantum key distribution,” Appl. Opt. 47(4), A32–A42 (2008).
    [CrossRef] [PubMed]
  8. S. Lin, and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications (Prentice Hall, 2004).
  9. Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
    [CrossRef]
  10. M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks,” Opt. Express 18(3), 1820–1832 (2010).
    [CrossRef] [PubMed]
  11. I. B. Djordjevic, “Adaptive modulation and coding for free-space optical channels,” IEEE J. Opt. Com. Netw. 2(5), 221–229 (2010).
    [CrossRef]
  12. L. C. Andrews, and R. L. Philips, Laser Beam Propagation through Random Media (SPIE Press, 2005).

2010 (4)

2008 (2)

2006 (1)

Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
[CrossRef]

2005 (1)

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

Anguita, J. A.

Arabaci, M.

Barnett, S.

Barnett, S. M.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

Batshon, H. G.

Chen, L.

Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
[CrossRef]

Courtial, J.

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

Djordjevic, I. B.

Dymale, R. C.

Fong, W.

Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
[CrossRef]

Franke-Arnold, S.

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

Gibson, G.

Gruneisen, M. T.

Leach, J.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

Li, Z.-W.

Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
[CrossRef]

Lin, S.

Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
[CrossRef]

Marcoccia, R. M.

Miller, W. A.

Neifeld, M. A.

Padgett, M.

Padgett, M. J.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

Pas’ko, V.

Paterson, C.

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

Saunders, R.

Schmidt, T.

Skeldon, K.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

Sweiti, A. M.

Vasic, B. V.

Vasnetsov, M.

Wang, T.

Xu, L.

Zeng, L.-Q.

Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
[CrossRef]

Appl. Opt. (2)

IEEE J. Opt. Com. Netw. (1)

I. B. Djordjevic, “Adaptive modulation and coding for free-space optical channels,” IEEE J. Opt. Com. Netw. 2(5), 221–229 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun. 54(1), 71–81 (2006).
[CrossRef]

Opt. Express (4)

Phys. Rev. Lett. (2)

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92(1), 013601 (2004).
[CrossRef] [PubMed]

C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94(15), 153901 (2005).
[CrossRef] [PubMed]

Other (2)

S. Lin, and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications (Prentice Hall, 2004).

L. C. Andrews, and R. L. Philips, Laser Beam Propagation through Random Media (SPIE Press, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Multidimensional LDPC-coded OAM modulation scheme: (a) OAM FSO system configuration; binary LDPC-coded (b) Tx and (c) Rx configurations; nonbinary LDPC-coded (d) Tx and (e) Rx configurations.

Fig. 2
Fig. 2

(a) BER performance of (2K + 1)-dimensional LDPC coded OAM schemes for several different LDPC codes when adaptive power-loading is used in weak-turbulence regime. (b) BER performance of 10-D coded OAM modulation over FSO channel for receiver spatial diversity. B denotes the number of receiver diversity branches.

Fig. 3
Fig. 3

BER performance of deep-space girth-12 LDPC-coded 10-OAM, 64-PPM system, where ns denotes the number of signal photons and where M = 64.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

s i = C j = 1 N φ i , j Φ j ,
H = [ H 0 , 0 H 0 , 1 H 0 , ρ 1 H 1 , 0 H 1 , 1 H 1 , ρ 1 H γ 1 , 0 H γ 1 , 1 H γ 1 , ρ 1 ] ,
S C N R [ dB ] = 10 log 10 ( E b N 0 + N x ) = 10 log 10 ( E b N 0 1 1 + N x N 0 ) = S N R [ dB ] 10 log 10 ( 1 + N x N 0 ) ,
σ R 2 = 1.23 C n 2 k 7 / 6 L 11 / 6 ,

Metrics