Abstract

We report the design and experimental demonstration of electro-optically active TM-guided to TE-radiation mode converters in annealed proton-exchanged (APE) periodically poled lithium niobate (PPLN) channel waveguides in telecom S-C-L bands (1495-1640 nm). A maximum mode conversion efficiency of >95%/cm was obtained at 1520 nm from a 24-μm-period APE PPLN waveguide under an electro-optic (EO) field of ~6.3 V/μm at 35°C. This efficiency has been enhanced by a factor of >4.6 over a waveguide built in the single-domain (unpoled) LiNbO3; it is also to the best of our knowledge the most efficient guided-to-radiation (GTR) mode converter ever reported based on LiNbO3 on-axis waveguides. A conversion bandwidth of ~250 nm was also observed from this EO GTR mode converter.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor and A. Yariv, “Guided Wave Optics,” Proc. IEEE 62(8), 1044–1060 (1974).
    [CrossRef]
  2. R. C. Alferness, “Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
    [CrossRef]
  3. D. Marcuse, “Electrooptic coupling between TE and TM modes in anisotropic slabs,” IEEE J. Quantum Electron. 11(9), 759–767 (1975).
    [CrossRef]
  4. S. Yamamoto, Y. Koyamada, and T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics,” J. Appl. Phys. 43(12), 5090–5097 (1972).
    [CrossRef]
  5. S. Yamamoto and Y. Okamura, “Guided-radiation mode interaction in off-axis propagation in anisotropic optical waveguides with application to direct-intensity modulators,” J. Appl. Phys. 50(4), 2555–2564 (1979).
    [CrossRef]
  6. Y. Okamura, S. Yamamoto, and T. Makimoto, “Electro-optic guided-to-radiation mode conversion in Cu-diffused LiTaO3 waveguide with periodic electrodes,” Appl. Phys. Lett. 32(3), 161–163 (1978).
    [CrossRef]
  7. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [CrossRef]
  8. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
    [CrossRef]
  9. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
    [CrossRef] [PubMed]
  10. Y. H. Chen, W. K. Chang, C. L. Chang, and C. H. Lin, “Single aperiodically poled lithium niobate for simultaneous laser Q switching and second-harmonic generation in a 1342 nm Nd:YVO4 laser,” Opt. Lett. 34(11), 1711–1713 (2009).
    [CrossRef] [PubMed]
  11. W. K. Chang, Y. H. Chen, and J. W. Chang, “Pulsed orange generation optimized in a diode-pumped Nd:YVO4 laser using monolithic dual PPLN electro-optic Q switches,” Opt. Lett. 35(16), 2687–2689 (2010).
    [CrossRef] [PubMed]
  12. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5 μm wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
    [CrossRef]
  13. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16(23), 1844–1846 (1991).
    [CrossRef] [PubMed]
  14. D. Marcuse, “Coupled-mode theory for anisotropic optical waveguides,” Bell Syst. Tech. J. 54(6), 985–995 (1975).
  15. N. Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microw. Theory Tech. 29(6), 600–605 (1981).
    [CrossRef]
  16. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [CrossRef]

2010 (1)

2009 (1)

2007 (1)

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

1998 (1)

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

1991 (1)

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

1981 (1)

N. Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microw. Theory Tech. 29(6), 600–605 (1981).
[CrossRef]

1980 (1)

R. C. Alferness, “Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
[CrossRef]

1979 (1)

S. Yamamoto and Y. Okamura, “Guided-radiation mode interaction in off-axis propagation in anisotropic optical waveguides with application to direct-intensity modulators,” J. Appl. Phys. 50(4), 2555–2564 (1979).
[CrossRef]

1978 (1)

Y. Okamura, S. Yamamoto, and T. Makimoto, “Electro-optic guided-to-radiation mode conversion in Cu-diffused LiTaO3 waveguide with periodic electrodes,” Appl. Phys. Lett. 32(3), 161–163 (1978).
[CrossRef]

1975 (2)

D. Marcuse, “Electrooptic coupling between TE and TM modes in anisotropic slabs,” IEEE J. Quantum Electron. 11(9), 759–767 (1975).
[CrossRef]

D. Marcuse, “Coupled-mode theory for anisotropic optical waveguides,” Bell Syst. Tech. J. 54(6), 985–995 (1975).

1974 (1)

H. F. Taylor and A. Yariv, “Guided Wave Optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[CrossRef]

1972 (1)

S. Yamamoto, Y. Koyamada, and T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics,” J. Appl. Phys. 43(12), 5090–5097 (1972).
[CrossRef]

Alferness, R. C.

R. C. Alferness, “Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
[CrossRef]

Arbore, M. A.

Bortz, M. L.

Chang, C. L.

Chang, J. W.

Chang, W. K.

Chen, Y. H.

Chou, M. H.

Fejer, M. M.

Hauden, J.

Huang, C. Y.

Huang, Y. C.

Koyamada, Y.

S. Yamamoto, Y. Koyamada, and T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics,” J. Appl. Phys. 43(12), 5090–5097 (1972).
[CrossRef]

Lagasse, P. E.

N. Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microw. Theory Tech. 29(6), 600–605 (1981).
[CrossRef]

Lin, C. H.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Mabaya, N.

N. Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microw. Theory Tech. 29(6), 600–605 (1981).
[CrossRef]

Makimoto, T.

Y. Okamura, S. Yamamoto, and T. Makimoto, “Electro-optic guided-to-radiation mode conversion in Cu-diffused LiTaO3 waveguide with periodic electrodes,” Appl. Phys. Lett. 32(3), 161–163 (1978).
[CrossRef]

S. Yamamoto, Y. Koyamada, and T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics,” J. Appl. Phys. 43(12), 5090–5097 (1972).
[CrossRef]

Marcuse, D.

D. Marcuse, “Electrooptic coupling between TE and TM modes in anisotropic slabs,” IEEE J. Quantum Electron. 11(9), 759–767 (1975).
[CrossRef]

D. Marcuse, “Coupled-mode theory for anisotropic optical waveguides,” Bell Syst. Tech. J. 54(6), 985–995 (1975).

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Okamura, Y.

S. Yamamoto and Y. Okamura, “Guided-radiation mode interaction in off-axis propagation in anisotropic optical waveguides with application to direct-intensity modulators,” J. Appl. Phys. 50(4), 2555–2564 (1979).
[CrossRef]

Y. Okamura, S. Yamamoto, and T. Makimoto, “Electro-optic guided-to-radiation mode conversion in Cu-diffused LiTaO3 waveguide with periodic electrodes,” Appl. Phys. Lett. 32(3), 161–163 (1978).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Taylor, H. F.

H. F. Taylor and A. Yariv, “Guided Wave Optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[CrossRef]

Vandenbulcke, P.

N. Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microw. Theory Tech. 29(6), 600–605 (1981).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Yamamoto, S.

S. Yamamoto and Y. Okamura, “Guided-radiation mode interaction in off-axis propagation in anisotropic optical waveguides with application to direct-intensity modulators,” J. Appl. Phys. 50(4), 2555–2564 (1979).
[CrossRef]

Y. Okamura, S. Yamamoto, and T. Makimoto, “Electro-optic guided-to-radiation mode conversion in Cu-diffused LiTaO3 waveguide with periodic electrodes,” Appl. Phys. Lett. 32(3), 161–163 (1978).
[CrossRef]

S. Yamamoto, Y. Koyamada, and T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics,” J. Appl. Phys. 43(12), 5090–5097 (1972).
[CrossRef]

Yariv, A.

H. F. Taylor and A. Yariv, “Guided Wave Optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[CrossRef]

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (4)

R. C. Alferness, “Efficient waveguide electro-optic TE↔TM mode converter/wavelength filter,” Appl. Phys. Lett. 36(7), 513–515 (1980).
[CrossRef]

Y. Okamura, S. Yamamoto, and T. Makimoto, “Electro-optic guided-to-radiation mode conversion in Cu-diffused LiTaO3 waveguide with periodic electrodes,” Appl. Phys. Lett. 32(3), 161–163 (1978).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Coupled-mode theory for anisotropic optical waveguides,” Bell Syst. Tech. J. 54(6), 985–995 (1975).

IEEE J. Quantum Electron. (1)

D. Marcuse, “Electrooptic coupling between TE and TM modes in anisotropic slabs,” IEEE J. Quantum Electron. 11(9), 759–767 (1975).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

N. Mabaya, P. E. Lagasse, and P. Vandenbulcke, “Finite element analysis of optical waveguides,” IEEE Trans. Microw. Theory Tech. 29(6), 600–605 (1981).
[CrossRef]

J. Appl. Phys. (2)

S. Yamamoto, Y. Koyamada, and T. Makimoto, “Normal-mode analysis of anisotropic and gyrotropic thin-film waveguides for integrated optics,” J. Appl. Phys. 43(12), 5090–5097 (1972).
[CrossRef]

S. Yamamoto and Y. Okamura, “Guided-radiation mode interaction in off-axis propagation in anisotropic optical waveguides with application to direct-intensity modulators,” J. Appl. Phys. 50(4), 2555–2564 (1979).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. IEEE (1)

H. F. Taylor and A. Yariv, “Guided Wave Optics,” Proc. IEEE 62(8), 1044–1060 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated normalized overlap integral as a function of the effective refractive index and the corresponding escaping angle of the radiation mode for the coupling between the TM00 and TE radiation modes in an APE LiNbO3 waveguide at λ 0 = 1520 nm, at 40°C. The red line is the fitting curve of the data distribution. The dashed green line indicates the corresponding value of the effective refractive index of the TM00 guided mode. The arrow marked with KQPM /k0 means the PPLN grating vector demanded to satisfy the longitudinal phase matching for an efficient overlap integral.

Fig. 2
Fig. 2

Microscopic image of a portion of the + z surface of the fabricated APE PPLN EO waveguide device, showing the arrangement of the electrodes relative to the waveguides and the PPLN domains.

Fig. 3
Fig. 3

Measured spectral transmittances (TEO ) of the TM mode from a 24-μm-period APE PPLN waveguide for various EO voltages at 35°C. The inset shows the measured transmittance of the TM guided mode at 1520 nm as a function of the crystal temperature from the 24-μm-period PPLN waveguide at an EO voltage of 250 V.

Fig. 4
Fig. 4

(a) Measured spectral transmittances (TEO ) of the TM mode from the APE PPLN EO waveguides of various grating periods (not shown for Λ = 10 and 50 μm) when operated at 250 V and 35°C. (b) Mode conversion efficiency (ηc ) of the device as a function of the PPLN period at 1520-nm wavelength.

Fig. 5
Fig. 5

Far-field intensity profiles of the 1550-nm TM00 guided mode measured from an APE waveguide in the single-domain section with an EO voltage of 0 V (left) and 250 V (right).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A g d x = 0 n o s k 0 κ g r A β ρ e i Δ β x d ρ , d A β ρ d x = κ g r * A g e i Δ β x
Δ β β ρ β g K Q P M ,
κ g r = i 2 λ 0 E 0 n o , e f f n e , e f f sin ( m π D ) m ϑ
ϑ = r 51 ( y , z ) ( n o ( y , z ) n e ( y , z ) ) 2 e T E * ( y , z ) e y ( y , z ) e T M ( y , z ) d y d z
η c = 1 | A g ( L ) | E y 0 A g ( L ) | E y = 0 | 2 1 T E O
Λ = m λ 0 n o , e f f n e , e f f ,

Metrics