Abstract

The spectral response of a Bragg grating reflector inscribed in a microstructured optical fibre is tuned by employing an infiltrated ferrofluid, while modifying the overlap of the ferrofluidic medium with the grating length. Significant spectral changes in terms of Bragg grating wavelength shift and extinction ratio were obtained under static magnetic field actuation. Spectral measurements revealed non-bidirectional propagation effects dependent upon the relative position between the ferrofluid and the grating. The actuation speed of the device was measured to be of the order of few seconds.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. St. J. Philip, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  4. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4080 .
    [CrossRef] [PubMed]
  6. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2589 .
    [CrossRef] [PubMed]
  7. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-698 .
    [CrossRef] [PubMed]
  8. A. Cusano, D. Paladino, and A. Iadicicco, “Microstructured Fibre Bragg Gratings,” J. Lightwave Technol. 27(11), 1663–1697 (2009).
    [CrossRef]
  9. Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009).
    [CrossRef] [PubMed]
  10. L. Wei, J. Weirich, T. T. Alkeskjold, and A. Bjarklev, “On-chip tunable long-period grating devices based on liquid crystal photonic bandgap fibers,” Opt. Lett. 34(24), 3818–3820 (2009).
    [CrossRef] [PubMed]
  11. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [CrossRef] [PubMed]
  12. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009).
    [CrossRef]
  13. R. E. Rosenweig, “Ferrohydrodynamics,” (Dover, New York 1997)
  14. C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
    [CrossRef]
  15. H. E. Horng, J. J. Chieh, Y. H. Chao, and S. Y. Yang, “Designing optical-fibre modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
    [CrossRef] [PubMed]
  16. B. B. Yellen, G. Fridman, and G. Friedman, “Ferrofluid lithography,” Nanotechnology 15(10), S562–S565 (2004).
    [CrossRef]
  17. H. Labidi, J.-J. Guerin, V. Girardon, X. Bonnet, C. Simonneau, R. Boucenna, C. de Barros, N. Daley, and I. Riant, “Dynamic gain control of optical amplifier using an all-fibre solution” 28th European Conference on Optical Communication ECOC, PD1.8, page 1–2, Vol 5, Copenhagen, 8–12 Sept. 2002B.B.
  18. A. Candiani, M. Konstantaki, S. Pissadakis, “Magnetic Tuning of Optical Fibre Long Period Gratings,” CLEO-Europe 2009, CH4.2.
  19. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  20. S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibres using 248 nm 5 ps, laser radiation,” J. Europ. Opt. Soc. Rap. Public. 4, 09049 (2009).
    [CrossRef]
  21. H. Schwerdt, “Application of ferrofluid as a valve/pump for polycarbonate microfluidic devices,” NSF summer thesis, Johns Hopkins University (2006) http://www.seas.upenn.edu/~sunfest/pastProjects/Papers06/Schwerdt.pdf

2009 (6)

2008 (1)

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

2006 (2)

St. J. Philip, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005 (3)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

H. E. Horng, J. J. Chieh, Y. H. Chao, and S. Y. Yang, “Designing optical-fibre modulators by using magnetic fluids,” Opt. Lett. 30, 543–545 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

2001 (1)

Alkeskjold, T. T.

Bang, O.

Baptista, J. M.

Bartelt, H.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Bjarklev, A.

Broeng, J.

Brueckner, S.

Chao, Y. H.

Chastellain, M.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

Chieh, J. J.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Cusano, A.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Ecke, W.

Eggleton, B.

Eggleton, B. J.

D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Frazão, O.

Fridman, G.

B. B. Yellen, G. Fridman, and G. Friedman, “Ferrofluid lithography,” Nanotechnology 15(10), S562–S565 (2004).
[CrossRef]

Friedman, G.

B. B. Yellen, G. Fridman, and G. Friedman, “Ferrofluid lithography,” Nanotechnology 15(10), S562–S565 (2004).
[CrossRef]

Gijs, M. A. M.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

Hale, A.

Hansen, T.

Hermann, D.

Hofmann, H.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

Horng, H. E.

Iadicicco, A.

Jin, L.

Jin, W.

Kerbage, C.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Kobelke, J.

Kuhlmey, B. T.

Larsen, T.

Livitziis, M.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibres using 248 nm 5 ps, laser radiation,” J. Europ. Opt. Soc. Rap. Public. 4, 09049 (2009).
[CrossRef]

Ludvigsen, H.

Martynkien, T.

Moerl, K.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Paladino, D.

Parashar, V. K.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

Petersen, J.

Petri, A.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

Philip, St. J.

Pissadakis, S.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibres using 248 nm 5 ps, laser radiation,” J. Europ. Opt. Soc. Rap. Public. 4, 09049 (2009).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Rindorf, L.

Ritari, T.

Rothhardt, M.

Russell, P. S.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Santos, J. L.

Schroeder, K.

Shan, L.

Simonsen, H.

Sørensen, T.

Spittel, R.

Tan, X.

Tsibidis, G. D.

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibres using 248 nm 5 ps, laser radiation,” J. Europ. Opt. Soc. Rap. Public. 4, 09049 (2009).
[CrossRef]

Tuominen, J.

Urbanczyk, W.

Wang, Y.

Wei, L.

Weirich, J.

Westbrook, P.

Willsch, R.

Windeler, R.

Wojcik, J.

Wu, D. K. C.

Yamahata, C.

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, S. Y.

Yellen, B. B.

B. B. Yellen, G. Fridman, and G. Friedman, “Ferrofluid lithography,” Nanotechnology 15(10), S562–S565 (2004).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public. (1)

S. Pissadakis, M. Livitziis, and G. D. Tsibidis, “Investigations on the Bragg grating recording in all-silica, standard and microstructured optical fibres using 248 nm 5 ps, laser radiation,” J. Europ. Opt. Soc. Rap. Public. 4, 09049 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Microelectromech. Syst. (1)

C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, “Plastic micropump with ferrofluidic actuation,” J. Microelectromech. Syst. 14(1), 96–102 (2005).
[CrossRef]

Nanotechnology (1)

B. B. Yellen, G. Fridman, and G. Friedman, “Ferrofluid lithography,” Nanotechnology 15(10), S562–S565 (2004).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Nature (2)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Other (4)

R. E. Rosenweig, “Ferrohydrodynamics,” (Dover, New York 1997)

H. Labidi, J.-J. Guerin, V. Girardon, X. Bonnet, C. Simonneau, R. Boucenna, C. de Barros, N. Daley, and I. Riant, “Dynamic gain control of optical amplifier using an all-fibre solution” 28th European Conference on Optical Communication ECOC, PD1.8, page 1–2, Vol 5, Copenhagen, 8–12 Sept. 2002B.B.

A. Candiani, M. Konstantaki, S. Pissadakis, “Magnetic Tuning of Optical Fibre Long Period Gratings,” CLEO-Europe 2009, CH4.2.

H. Schwerdt, “Application of ferrofluid as a valve/pump for polycarbonate microfluidic devices,” NSF summer thesis, Johns Hopkins University (2006) http://www.seas.upenn.edu/~sunfest/pastProjects/Papers06/Schwerdt.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scanning electron microscope photo of the MOF used. The fibre cladding diameter is 125μm. (b) Transmission spectrum of the MOF grating after PVP functionalisation.

Fig. 2
Fig. 2

(a) Schematic of the ferrofluid infiltrated MOF-Bragg grating. For the specific position of the ferrofluid the MOF Bragg grating actuator is at State A. (b) Overview picture of a ferrofluid infiltrated MOF with the actuating magnet on the bottom. Minimum scale=1/32 inch. (c) Close view of the MOF, for depicting the “grey” length of the in-fibre infiltrated ferrofluid.

Fig. 3
Fig. 3

Transmission spectra contour graph of the ferrofluid infiltrated MOF Bragg reflector, for different values of the coordination Ox defining the overlap of the ferrofluid with the grating.

Fig. 4
Fig. 4

Transmission data for Bragg wavelength shift and grating strength (extinction ratio) changes, for the 0th and the 1st guiding modes scattered by the infiltrated, MOF- reflector. The shadowed area resembles the 4mm grating length, assisting visualization. Black and red color traces refer to forward and backward translation of the ferrofluid for investigating repeatability.

Fig. 5
Fig. 5

Spectral measurements in transmission and reflection for different positions of the ferrofluid with respect to the Bragg grating. (a) State A (d) State B.

Fig. 6
Fig. 6

Power modulation results for two cycles, in transmission and reflection obtained for the 1st guiding mode. Stepper motor speed 0.5mm/sec.

Metrics