Abstract

We present the design and fabrication of thermally-efficient tuning structures integrated into a narrowband reconfigurable radio-frequency (RF)-photonics filter using silicon-on-insulator waveguide optical delay lines. By introducing thermal isolation trenching, we are able to achieve IIR, FIR or arbitrary mixed response with less than 120mW average tuning power in a single RF-photonic unit cell filter.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. C. Chang, RF photonic technology in optical fiber links, (Cambridge University Press, 2002).
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  3. T. K. Woodward, et al., “Signal processing in analog optical links,” Technical Digest, 2009 Avionics, Fiber Optics and Photonics (AVFOP) Conference, 2009.
  4. P. Toliver, R. Menendez, T. Banwell, A. Agarwal, T. K. Woodward, N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, and M. Ashghari, “A programmable optical filter unit cell element for high resolution RF signal processing in silicon photonics,” Optical Fiber Communication Conference 2010, paper OWJ4 (2010).
  5. E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP-InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010).
    [CrossRef]
  6. L. Zhou, S. S. Djordjevic, N. K. Fontaine, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Silicon microring resonator-based reconfigurable optical lattice filter for on-chip optical signal processing,” LEOS 2009, paper WN5 (2009).
  7. M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
    [CrossRef]
  8. R. A. Soref, “Silicon-Based Optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
    [CrossRef]
  9. A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
    [CrossRef] [PubMed]
  10. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” CLEO 2009, postdeadline paper CPDB10 (2009).
  11. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  12. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  13. N.-N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm V(π)L integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010).
    [CrossRef] [PubMed]
  14. J. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16(26), 21476–21482 (2008).
    [CrossRef] [PubMed]
  15. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [CrossRef] [PubMed]
  16. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]

2010 (3)

2009 (2)

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express 17(13), 10457–10465 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (1)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

2003 (1)

1993 (1)

R. A. Soref, “Silicon-Based Optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
[CrossRef]

Almeida, V. R.

Asghari, M.

Beals, M.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Beattie, J.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Capmany, J.

Carothers, D.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Cheben, P.

Chen, Y. K.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Chetrit, Y.

Ciftcioglu, B.

Coldren, L. A.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP-InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010).
[CrossRef]

Cunningham, J. E.

Delâge, A.

Densmore, A.

Dong, P.

Fang, Q.

Feng, D.

Feng, N.-N.

Gill, D. M.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Guzzon, R. S.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP-InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010).
[CrossRef]

Izhaky, N.

Janz, S.

Kimerling, L. C.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Krishnamoorthy, A. V.

Kwong, D. L.

Lapointe, J.

Li, G.

Liang, H.

Liao, L.

Liao, S.

Liow, T. Y.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Liu, A.

Lo, G. Q.

Ma, R.

Michel, J.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Nguyen, H.

Nicholes, S. C.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP-InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010).
[CrossRef]

Norberg, E. J.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP-InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010).
[CrossRef]

Ortega, B.

Panepucci, R. R.

Paniccia, M.

Parker, J. S.

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP-InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010).
[CrossRef]

Pastor, D.

Patel, S. S.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Pomerene, A.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Qian, W.

Rasras, M. S.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Rubin, D.

Schmid, J. H.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shafiiha, R.

Song, J.

Soref, R. A.

R. A. Soref, “Silicon-Based Optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
[CrossRef]

Tao, S. H.

Tu, K. Y.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Vachon, M.

White, A. E.

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

Xu, D.-X.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yu, M. B.

Zhao, H.

Zheng, D.

Zheng, X.

IEEE Photon. Technol. Lett. (1)

E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, and L. A. Coldren, “Programmable photonic lattice filters in InGaAsP-InP,” IEEE Photon. Technol. Lett. 22(2), 109–111 (2010).
[CrossRef]

J. Lightwave Technol (1)

M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol . 27, 2105–2110 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

R. A. Soref, “Silicon-Based Optoelectronics,” Proc. IEEE 81(12), 1687–1706 (1993).
[CrossRef]

Other (5)

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” CLEO 2009, postdeadline paper CPDB10 (2009).

W. S. C. Chang, RF photonic technology in optical fiber links, (Cambridge University Press, 2002).

L. Zhou, S. S. Djordjevic, N. K. Fontaine, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Silicon microring resonator-based reconfigurable optical lattice filter for on-chip optical signal processing,” LEOS 2009, paper WN5 (2009).

T. K. Woodward, et al., “Signal processing in analog optical links,” Technical Digest, 2009 Avionics, Fiber Optics and Photonics (AVFOP) Conference, 2009.

P. Toliver, R. Menendez, T. Banwell, A. Agarwal, T. K. Woodward, N.-N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, and M. Ashghari, “A programmable optical filter unit cell element for high resolution RF signal processing in silicon photonics,” Optical Fiber Communication Conference 2010, paper OWJ4 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the tunable RF-photonic filter; (b) Optical microscope image of the fabricated device.

Fig. 2
Fig. 2

(a) The cross-sectional view of tuning section of the tunable coupler with the deep-etched isolation trench structure; (b) a typical simulation result of the temperature distribution of the tuning section; (c) simulation results of the phase shift versus power consumption for the structures with or without thermal isolation trench; (d) transient response of temperature change as function of time.

Fig. 3
Fig. 3

(a) Tuning power for π phase shift versus the trench distance; (b) normalized output power of a typical tunable coupler structure; (c) measured transient response of the MZI tunable coupler.

Fig. 4
Fig. 4

(a) FIR and (b) IIR responses of a unit cell filter with 500ps optical delay line with corresponding circuit plots for (c) FIR and (d) IIR responses, respectively.

Metrics