Abstract

We report fabrication method and THz characterization of composite films containing either aligned metallic (tin alloy) microwires or chalcogenide As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or semiconductor glasses together with polymers. Fibers are then stacked together and pressed into composite films. Transmission through metamaterial films is studied in the whole THz range (0.1-20 THz) using a combination of FTIR and TDS. Metal containing metamaterials are found to have strong polarizing properties, while semiconductor containing materials are polarization independent and could have a designable high refractive index. Using the transfer matrix theory, we show how to retrieve the complex polarization dependent refractive index of the composite films. Finally, we study challenges in the fabrication of metamaterials with sub-micrometer metallic wires by repeated stack-and-draw process by comparing samples made using 2, 3 and 4 consecutive drawings. When using metallic alloys we observe phase separation effects and nano-grids formation on small metallic wires.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
    [CrossRef] [PubMed]
  2. R. Yahiaoui, H. Nemec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541 (2009).
    [CrossRef] [PubMed]
  3. W. Cai, and V. Shalaev, Optical metamaterials. fundamentals and applications (Springer, 2010)
  4. C. Brosseau, “Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective,” J. Phys. D Appl. Phys. 39(7), 1277–1294 (2006).
    [CrossRef]
  5. S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
    [CrossRef]
  6. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
    [CrossRef]
  7. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
    [CrossRef]
  8. K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
    [CrossRef]
  9. Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4785 .
    [CrossRef] [PubMed]
  10. K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
    [CrossRef]
  11. T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), 373–375 (2003).
    [CrossRef]
  12. G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
    [CrossRef]
  13. A. Huczko, “Template-based synthesis of nanomaterials,” Appl. Phys., A Mater. Sci. Process. 70(4), 365–376 (2000).
    [CrossRef]
  14. X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
    [CrossRef]
  15. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
    [CrossRef]
  16. A. Mazhorova, J. F. Gu, S. Gorgutsa, M. Peccianti, T. Ozaki, R. Morandotti, M. Tang, H. Minamide, H. Ito, and M. Skorobogatiy, “THz metamaterials using aligned metallic or semiconductor nanowires” We-P.31, Proceedings of IEEE34th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2010.
  17. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
    [CrossRef] [PubMed]
  18. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [CrossRef] [PubMed]
  19. M. Skorobogatiy, and J. Yang, Fundamentals of photonic crystal guiding (Cambridge University Press, 2009)
  20. M. Born, and E. Wolf, Principles of optics (Cambridge University Press, 7th edition, 1999)
  21. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
    [CrossRef] [PubMed]
  22. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Opt. Express 16(10), 7382–7396 (2008).
    [CrossRef] [PubMed]
  23. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513 (2006).
  24. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  25. S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
    [CrossRef]
  26. P. Markoš and C. M. Soukoulis, “Absorption losses in periodic arrays of thin metallic wires,” Opt. Lett. 28(10), 846 (2003).
    [CrossRef] [PubMed]
  27. M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
    [CrossRef]
  28. A. Rahachou and I. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt. 9(3), 265–270 (2007).
    [CrossRef]
  29. K. Aydin, K. Guven, N. Katsarakis, C. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12(24), 5896–5901 (2004).
    [CrossRef] [PubMed]
  30. N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
    [CrossRef]
  31. N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
    [CrossRef]
  32. J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
    [CrossRef]
  33. S. H. Chen, C. C. Chen, and C. G. Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires,” J. Alloy. Comp. 481(1-2), 270–273 (2009).
    [CrossRef]
  34. L. Harris and J. Piper, “Optical and Electrical Properties of Bismuth Deposits,” J. Opt. Soc. A 53, 1271 (1963).
    [CrossRef]
  35. W. S. Boyle and A. D. Brailsford, “Far infrared Studies of Bismuth,” Phys. Rev. 120(6), 1943–1949 (1960).
    [CrossRef]
  36. V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52(16), 2343–2349 (2005).
    [CrossRef]
  37. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
    [CrossRef]
  38. J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
    [CrossRef]
  39. M. G. Silveirinha, ““Nonlocal Homogenization Model for a Periodic Array of ε-Negative Rods,” Phys. Rev. E - Statistical,” Nonlinear Soft Matt. Phys. 73(4), 046612 (2008).
    [CrossRef]

2010 (6)

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[CrossRef] [PubMed]

2009 (6)

Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009).
[CrossRef] [PubMed]

R. Yahiaoui, H. Nemec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541 (2009).
[CrossRef] [PubMed]

J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
[CrossRef]

S. H. Chen, C. C. Chen, and C. G. Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires,” J. Alloy. Comp. 481(1-2), 270–273 (2009).
[CrossRef]

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[CrossRef]

2008 (6)

M. G. Silveirinha, ““Nonlocal Homogenization Model for a Periodic Array of ε-Negative Rods,” Phys. Rev. E - Statistical,” Nonlinear Soft Matt. Phys. 73(4), 046612 (2008).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda, K. Hirao, and K. Tanaka, “Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy,” Opt. Express 16(7), 4785–4796 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4785 .
[CrossRef] [PubMed]

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy,” Opt. Express 16(10), 7382–7396 (2008).
[CrossRef] [PubMed]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[CrossRef]

2007 (1)

A. Rahachou and I. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt. 9(3), 265–270 (2007).
[CrossRef]

2006 (3)

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[CrossRef]

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513 (2006).

C. Brosseau, “Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective,” J. Phys. D Appl. Phys. 39(7), 1277–1294 (2006).
[CrossRef]

2005 (1)

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52(16), 2343–2349 (2005).
[CrossRef]

2004 (1)

2003 (2)

P. Markoš and C. M. Soukoulis, “Absorption losses in periodic arrays of thin metallic wires,” Opt. Lett. 28(10), 846 (2003).
[CrossRef] [PubMed]

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), 373–375 (2003).
[CrossRef]

2002 (2)

C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
[CrossRef] [PubMed]

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

2001 (2)

N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
[CrossRef]

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

2000 (1)

A. Huczko, “Template-based synthesis of nanomaterials,” Appl. Phys., A Mater. Sci. Process. 70(4), 365–376 (2000).
[CrossRef]

1997 (1)

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

1963 (1)

L. Harris and J. Piper, “Optical and Electrical Properties of Bismuth Deposits,” J. Opt. Soc. A 53, 1271 (1963).
[CrossRef]

1960 (1)

W. S. Boyle and A. D. Brailsford, “Far infrared Studies of Bismuth,” Phys. Rev. 120(6), 1943–1949 (1960).
[CrossRef]

Abbott, D.

Abe, Y.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Akiyama, K.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

Alekseyev, L. V.

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52(16), 2343–2349 (2005).
[CrossRef]

Anthony, J.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Aydin, K.

Bayindir, M.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

Belov, P. A.

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

Bird, D.

Boltasseva, A.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Boyle, W. S.

W. S. Boyle and A. D. Brailsford, “Far infrared Studies of Bismuth,” Phys. Rev. 120(6), 1943–1949 (1960).
[CrossRef]

Brailsford, A. D.

W. S. Boyle and A. D. Brailsford, “Far infrared Studies of Bismuth,” Phys. Rev. 120(6), 1943–1949 (1960).
[CrossRef]

Brosseau, C.

C. Brosseau, “Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective,” J. Phys. D Appl. Phys. 39(7), 1277–1294 (2006).
[CrossRef]

Bulu, I.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

Chao, C. G.

S. H. Chen, C. C. Chen, and C. G. Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires,” J. Alloy. Comp. 481(1-2), 270–273 (2009).
[CrossRef]

Chen, C. C.

S. H. Chen, C. C. Chen, and C. G. Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires,” J. Alloy. Comp. 481(1-2), 270–273 (2009).
[CrossRef]

Chen, S. H.

S. H. Chen, C. C. Chen, and C. G. Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires,” J. Alloy. Comp. 481(1-2), 270–273 (2009).
[CrossRef]

Cubukcu, E.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

Cumming, D. R. S.

Drysdale, T. D.

Elser, J.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
[CrossRef]

Fischer, B. M.

Fleming, S. C.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Fu, Y. H.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
[CrossRef]

Fujii, T.

George, A.

Guven, K.

Hangyo, M.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), 373–375 (2003).
[CrossRef]

Harris, L.

L. Harris and J. Piper, “Optical and Electrical Properties of Bismuth Deposits,” J. Opt. Soc. A 53, 1271 (1963).
[CrossRef]

Hirao, K.

Holden, A. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Hornyak, G. L.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[CrossRef]

Hou, J.

Hsieh, C.-F.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Huang, M.

J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
[CrossRef]

Huczko, A.

A. Huczko, “Template-based synthesis of nanomaterials,” Appl. Phys., A Mater. Sci. Process. 70(4), 365–376 (2000).
[CrossRef]

Jansen, C.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[CrossRef]

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513 (2006).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513 (2006).

Joly, N.

Kadlec, C.

Kadlec, F.

Katsarakis, N.

Katsidis, C. C.

Kawabata, T.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Khalid, A.

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513 (2006).

Knight, J. C.

Koch, M.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[CrossRef]

Kondo, T.

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), 373–375 (2003).
[CrossRef]

Kuboda, S.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

Kuhlmey, B. T.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

Kužel, P.

Lee, H. W.

Leonhardt, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Li, S.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Li, Y.-X.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Ling, W.-W.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Lwin, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Ma, Y.

Ma, Z.

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[CrossRef]

Maier, S.

Markoš, P.

Martin, C. R.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[CrossRef]

Maslovski, S. I.

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

Minowa, Y.

Miyamaru, F.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

Mounaix, P.

Nagai, M.

Nagashima, T.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), 373–375 (2003).
[CrossRef]

Narimanov, E. E.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[CrossRef]

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52(16), 2343–2349 (2005).
[CrossRef]

Nemec, H.

Ochiai, T.

Ozbay, E.

K. Aydin, K. Guven, N. Katsarakis, C. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12(24), 5896–5901 (2004).
[CrossRef] [PubMed]

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

Pan, C.-L.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Pan, R.-P.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
[CrossRef]

Patrissi, C. J.

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Peng, J.-H.

J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
[CrossRef]

Piper, J.

L. Harris and J. Piper, “Optical and Electrical Properties of Bismuth Deposits,” J. Opt. Soc. A 53, 1271 (1963).
[CrossRef]

Podolskiy, V. A.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[CrossRef]

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52(16), 2343–2349 (2005).
[CrossRef]

Rahachou, A.

A. Rahachou and I. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt. 9(3), 265–270 (2007).
[CrossRef]

Russell, P. S.

Sakoda, K.

Scharrer, M.

Scheller, M.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[CrossRef]

Schmidt, M. A.

Shalaev, V. M.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Shibuya, K.

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

Siapkas, D. I.

Silveirinha, M. G.

M. G. Silveirinha, ““Nonlocal Homogenization Model for a Periodic Array of ε-Negative Rods,” Phys. Rev. E - Statistical,” Nonlinear Soft Matt. Phys. 73(4), 046612 (2008).
[CrossRef]

Smith, N. V.

N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
[CrossRef]

Song, Y.-Q.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Soukoulis, C.

K. Aydin, K. Guven, N. Katsarakis, C. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12(24), 5896–5901 (2004).
[CrossRef] [PubMed]

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

Soukoulis, C. M.

Stewart, W. J.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Su, M.

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[CrossRef]

Sun, J.

J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
[CrossRef]

Taima, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

Takano, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Takeda, M. W.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

Tanaka, K.

Tokuda, Y.

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Tretyakov, S. A.

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

Tsai, D. P.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
[CrossRef]

Tuniz, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Tut, T.

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

Tyagi, H. K.

Uebel, P.

Wang, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Wangberg, R.

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[CrossRef]

Wen, Q.-Y.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Wietzke, S.

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[CrossRef]

Withayachumnankul, W.

Wu, Z.-Y.

J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
[CrossRef]

Xie, Y.-S.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Yahiaoui, R.

Yang, J.-J.

J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Yuan, Z.-Y.

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[CrossRef]

Zha, J.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Zhang, H.-W.

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

Zhang, X.

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[CrossRef]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
[CrossRef]

Zozoulenko, I.

A. Rahachou and I. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt. 9(3), 265–270 (2007).
[CrossRef]

Adv. Mater. (1)

X. Zhang, Z. Ma, Z.-Y. Yuan, and M. Su, “Mass-productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (1)

K. Takano, T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, “Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer,” Appl. Phys. Express 3(1), 016701 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[CrossRef]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

J. Elser, R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, “Nanowire metamaterials with extreme optical anisotropy,” Appl. Phys. Lett. 89(26), 261102 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Huczko, “Template-based synthesis of nanomaterials,” Appl. Phys., A Mater. Sci. Process. 70(4), 365–376 (2000).
[CrossRef]

Front. Mater. Sci. China (1)

J.-H. Peng, J.-J. Yang, M. Huang, J. Sun, and Z.-Y. Wu, “Simulation and analysis of the effective permittivity for two-phase composite medium,” Front. Mater. Sci. China 3(1), 38–43 (2009).
[CrossRef]

Infrared Phys. Technol. (1)

S. Li, H.-W. Zhang, Q.-Y. Wen, Y.-Q. Song, Y.-S. Xie, W.-W. Ling, Y.-X. Li, and J. Zha, “Micro-fabrication and properties of the meta materials for the terahertz regime,” Infrared Phys. Technol. 53(1), 61–64 (2010).
[CrossRef]

J. Alloy. Comp. (1)

S. H. Chen, C. C. Chen, and C. G. Chao, “Novel morphology and solidification behavior of eutectic bismuth–tin (Bi–Sn) nanowires,” J. Alloy. Comp. 481(1-2), 270–273 (2009).
[CrossRef]

J. Appl. Phys. (1)

K. Takano, K. Shibuya, K. Akiyama, T. Nagashima, F. Miyamaru, and M. Hangyo, “A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region,” J. Appl. Phys. 107(2), 024907 (2010).
[CrossRef]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz Dielectric Properties of Polymers,” J. Korean Phys. Soc. 49, 513 (2006).

J. Mod. Opt. (1)

V. A. Podolskiy, L. V. Alekseyev, and E. E. Narimanov, “Strongly anisotropic media: the THz perspectives of left-handed materials,” J. Mod. Opt. 52(16), 2343–2349 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Rahachou and I. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt. 9(3), 265–270 (2007).
[CrossRef]

J. Opt. Soc. A (1)

L. Harris and J. Piper, “Optical and Electrical Properties of Bismuth Deposits,” J. Opt. Soc. A 53, 1271 (1963).
[CrossRef]

J. Phys. Chem. B (1)

G. L. Hornyak, C. J. Patrissi, and C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit,” J. Phys. Chem. B 101(9), 1548–1555 (1997).
[CrossRef]

J. Phys. D Appl. Phys. (2)

C. Brosseau, “Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective,” J. Phys. D Appl. Phys. 39(7), 1277–1294 (2006).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D Appl. Phys. 42, 065415 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys. 42(Part 2, No. 4A), 373–375 (2003).
[CrossRef]

Metamaterials (Amst.) (1)

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: Recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

Nonlinear Soft Matt. Phys. (1)

M. G. Silveirinha, ““Nonlocal Homogenization Model for a Periodic Array of ε-Negative Rods,” Phys. Rev. E - Statistical,” Nonlinear Soft Matt. Phys. 73(4), 046612 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. (1)

W. S. Boyle and A. D. Brailsford, “Far infrared Studies of Bismuth,” Phys. Rev. 120(6), 1943–1949 (1960).
[CrossRef]

Phys. Rev. B (3)

N. Papasimakis, V. A. Fedotov, Y. H. Fu, D. P. Tsai, and N. I. Zheludev, “Coherent and incoherent metamaterials and order-disorder transitions,” Phys. Rev. B 80, 041102 (2009).
[CrossRef]

N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B 64(15), 155106 (2001).
[CrossRef]

M. Bayindir, E. Cubukcu, I. Bulu, T. Tut, E. Ozbay, and C. Soukoulis, “C. M. Soukoulis “Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals”,” Phys. Rev. B 64(19), 195113 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Other (4)

A. Mazhorova, J. F. Gu, S. Gorgutsa, M. Peccianti, T. Ozaki, R. Morandotti, M. Tang, H. Minamide, H. Ito, and M. Skorobogatiy, “THz metamaterials using aligned metallic or semiconductor nanowires” We-P.31, Proceedings of IEEE34th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2010.

W. Cai, and V. Shalaev, Optical metamaterials. fundamentals and applications (Springer, 2010)

M. Skorobogatiy, and J. Yang, Fundamentals of photonic crystal guiding (Cambridge University Press, 2009)

M. Born, and E. Wolf, Principles of optics (Cambridge University Press, 7th edition, 1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM pictures of the cross-sections of fabricated wire-array metamaterial fibers. a) metal wire fiber after 2nd drawing, b) metal wire fiber after 3rd drawing, c) semiconductor wire fiber after 4th drawing. Insets show magnification of individual wires. Inset of c) shows cluster of nanowires with the individual fiber diameters as small as 200nm.

Fig. 2
Fig. 2

Optical micrographs of a film containing (a) metal, and (b) semiconductor microwire array. Metamaterial layer is sandwiched between the two polymer layers. Figures (c) and (d) present top view of the films where metal and semiconductor wires can be seen to traverse the entire span of the film.

Fig. 3
Fig. 3

FTIR transmission spectra (0.1–20 THz) of a metamaterial film containing ordered (a) metal and (b) semiconductor wires. Strong polarization dependence of transmission spectrum is observed for metallic wire arrays.

Fig. 4
Fig. 4

Transmission spectra (a,c) and phase difference (b,d) of THz light through metamaterial film containing (a,b) ordered metallic wires, (c,d) ordered semiconductor wires.

Fig. 6
Fig. 6

Transmission spectra (a) and phase difference (b) of THz light through a plastic slabs.

Fig. 7
Fig. 7

a) real part of the refractive index and b) absorption losses of pure plastics PC, PSU.

Fig. 5
Fig. 5

Schematic of (a) one layer of plastic and (b) a metamaterial film modeled as a three layer system. The subscripts indicate the layer number, while the + and the – signs distinguish incoming and outgoing waves, respectively.

Fig. 8
Fig. 8

Extracted (a) refractive index, and (b) permittivity of a metamaterial layer containing metal wires.

Fig. 10
Fig. 10

Microwires after 2nd drawing featuring nanogrids. Microwires were obtained by dissolving PC polymer matrix. In the inset, shown is a pure Bi, Sn lamellar structure due to phase separation of an alloy.

Fig. 9
Fig. 9

Extracted (a) refractive index, and (b) permittivity of a metamaterial layer containing chalcogenide glass wires

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

( E i n + E i n ) = i = 1 2 M i 1 , 1 ( E o u t + 0 ) = [ T 11 m T 12 m T 21 m T 22 m ] ( E o u t + 0 )
t = 1 T 11 m = t a , p t p , a exp ( i n p ω d p / c ) 1 + r a , p r p , a exp ( 2 i n p ω d p / c )
t a , p = 2 n a n a + n p
r a , p = n a n p n a + n p
t = T ( ω ) e i φ = 4 n r e a l ( ω ) ( n r e a l ( ω ) + 1 ) 2 exp ( i ω d p c ( n r e a l 1 ) ) exp ( 1 2 α d p )
n r e a l ( ω ) = 1 + c φ ω d p
α = 2 n i m ω / c = 2 d p ln ( ( n r e a l ( ω ) + 1 ) 2 T ( ω ) 4 n r e a l ( ω ) )
( E i n + E i n ) = i = 1 4 M i 1 , 1 ( E o u t + 0 ) = D 0 1 [ i = 1 3 D i P i D i 1 ] D 4 ( E o u t + 0 ) = [ T 11 m T 12 m T 21 m T 22 m ] ( E o u t + 0 )
D i = 1 t i 1 , i [ 1 r i 1 , i r i 1 , i 1 ]
P i = [ exp ( i n i ω d i c ) 0 0 exp ( i n i ω d i c ) ]
t i 1 , i = 2 n i 1 n i 1 + n i
r i 1 , i = n i 1 n i n i 1 + n i
T m e a s u r e d = T ( ω ) e i φ = E o u t + ( ω ) / E r e f + ( ω ) e i ( φ φ r e f )
T m e a s u r e d T t h e o r y ( Re ( n m e t a ) , Im ( n m e t a ) ) = 0
( ε e f f ( t h e o r y ) ( ω ) ε p l a s t i c ε e f f ( t h e o r y ) ( ω ) + ε p l a s t i c ) f ( ε m ε p l a s t i c ε m + ε p l a s t i c ) = 0
ε e f f ( t h e o r y ) ( ω ) = f ε m + ( 1 f ) ε p l a s t i c
Q | | ( d , f ) = ω min ω max d ω | ε e f f ( t h e o r y ) | | ( ω ) ε e f f ( exp ) | | ( ω ) | 2
Q ( d , f ) = ω min ω max d ω | ε e f f ( t h e o r y ) ( ω ) ε e f f ( exp ) ( ω ) | 2
ε m = ε e f f ( t h e o r y ) ( ω ) ( 1 f ) ε p l a s t i c f

Metrics