Abstract

The manipulation of a supercontinuum via delayed optical feedback is investigated experimentally. The supercontinuum is generated in a microstructured fiber and a feedback ring resonator introduces the optical feedback and leads to the formation of different regimes of nonlinear dynamics. Via the feedback phase the optical spectrum and the regimes of nonlinear dynamics can be adjusted systematically. The impact of delay detuning on two different length scales, namely on a sub-wavelength scale and on a larger scale in the order of 10 μm are discussed. Additionally, the adjustment of the optical spectrum without changing the regime of nonlinear dynamics is demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
    [CrossRef]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef]
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  4. H. Zhang, S. Yu, J. Zhang, and W. Gu, “Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Express 15(3), 1147–1154 (2007).
    [CrossRef] [PubMed]
  5. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
    [CrossRef]
  6. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008).
    [CrossRef] [PubMed]
  7. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30(12), 1566–1568 (2005).
    [CrossRef] [PubMed]
  8. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
    [CrossRef] [PubMed]
  9. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [CrossRef]
  10. A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
    [CrossRef] [PubMed]
  11. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
    [CrossRef] [PubMed]
  12. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  13. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  14. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
    [CrossRef]
  15. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006).
    [CrossRef] [PubMed]
  16. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
    [CrossRef] [PubMed]
  17. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30(23), 3132–3134 (2005).
    [CrossRef] [PubMed]
  18. P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett. 32(17), 2629–2631 (2007).
    [CrossRef] [PubMed]
  19. D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. Martijn de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett. 32(12), 1644–1646 (2007).
    [CrossRef] [PubMed]
  20. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008).
    [CrossRef] [PubMed]
  21. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30(10), 1234–1236 (2005).
    [CrossRef] [PubMed]
  22. G. Steinmeyer, D. Jaspert, and F. Mitschke, “Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion,” Opt. Commun. 104(4-6), 379–384 (1994).
    [CrossRef]
  23. G. Sucha, D. S. Chemla, and S. R. Bolton, “Effects of cavity topology on the nonlinear dynamics of additive-pulse mode-locked lasers,” J. Opt. Soc. Am. B 15(12), 2847–2853 (1998).
    [CrossRef]
  24. M. Kues, N. Brauckmann, T. Walbaum, P. Gross, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17(18), 15827–15841 (2009).
    [CrossRef] [PubMed]
  25. N. Brauckmann, M. Kues, T. Walbaum, P. Gross, and C. Fallnich, “Experimental investigations on nonlinear dynamics in supercontinuum generation with feedback,” Opt. Express 18(7), 7190–7202 (2010).
    [CrossRef] [PubMed]
  26. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase – numerical investigations,” Opt. Express 18(20), 20667–20672 (2010).
    [CrossRef] [PubMed]
  27. N. K. T. Photonics, “NL-PM-750 data sheet,” http://www.nktphotonics.com/files/files/NL-PM-750-090612.pdf .
  28. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
    [CrossRef]

2010 (2)

2009 (2)

M. Kues, N. Brauckmann, T. Walbaum, P. Gross, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17(18), 15827–15841 (2009).
[CrossRef] [PubMed]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

2008 (3)

2007 (4)

2006 (3)

2005 (4)

2003 (2)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

1998 (1)

1994 (1)

G. Steinmeyer, D. Jaspert, and F. Mitschke, “Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion,” Opt. Commun. 104(4-6), 379–384 (1994).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Agrawal, G. P.

Aguirre, A. D.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Austin, D. R.

Bang, O.

Bolger, J. A.

Bolton, S. R.

Brauckmann, N.

Buchter, S. C.

Chemla, D. S.

Chudoba, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Deng, Y.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. Martijn de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett. 32(12), 1644–1646 (2007).
[CrossRef] [PubMed]

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Falk, P.

Fallnich, C.

Feder, K. S.

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Frosz, M. H.

Fujimoto, J. G.

Genty, G.

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

Ghanta, R. K.

Gross, P.

Groß, P.

Gross, P.

Gu, W.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hansen, K. P.

Hartl, I.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Jalali, B.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

Jaspert, D.

G. Steinmeyer, D. Jaspert, and F. Mitschke, “Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion,” Opt. Commun. 104(4-6), 379–384 (1994).
[CrossRef]

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Kaivola, M.

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006).
[CrossRef] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

Kaminski, C. F.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Kimmelma, O.

Knox, W. H.

Ko, T. H.

Kopf, D.

Kues, M.

Kuhlmey, B. T.

Lederer, M.

Lehtonen, M.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

Li, X. D.

Lin, Q.

Lu, F.

Ludvigsen, H.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

Marshall, G. D.

Martijn de Sterke, C.

Mitschke, F.

G. Steinmeyer, D. Jaspert, and F. Mitschke, “Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion,” Opt. Commun. 104(4-6), 379–384 (1994).
[CrossRef]

Moselund, P. M.

Nicholson, J. W.

Nishizawa, N.

Popov, S. V.

Räikkönen, E.

Ranka, J. K.

Rasmussen, P. D.

Ropers, C.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

Seitz, W.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Solli, D. R.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

Steinmeyer, G.

G. Steinmeyer, D. Jaspert, and F. Mitschke, “Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion,” Opt. Commun. 104(4-6), 379–384 (1994).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Stentz, A. J.

Sucha, G.

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Taylor, J. R.

Thomsen, C. L.

Travers, J. C.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

Walbaum, T.

Westbrook, P. S.

Windeler, R. S.

Withford, M. J.

Yeom, D.-I.

Yu, S.

Zhang, H.

Zhang, J.

Appl. Phys. B (1)

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94(2), 187–194 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett. 82(14), 2197–2199 (2003).
[CrossRef]

J. Microsc. (1)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. Steinmeyer, D. Jaspert, and F. Mitschke, “Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion,” Opt. Commun. 104(4-6), 379–384 (1994).
[CrossRef]

Opt. Express (9)

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16(16), 11954–11968 (2008).
[CrossRef] [PubMed]

M. Kues, N. Brauckmann, T. Walbaum, P. Gross, and C. Fallnich, “Nonlinear dynamics of femtosecond supercontinuum generation with feedback,” Opt. Express 17(18), 15827–15841 (2009).
[CrossRef] [PubMed]

N. Brauckmann, M. Kues, T. Walbaum, P. Gross, and C. Fallnich, “Experimental investigations on nonlinear dynamics in supercontinuum generation with feedback,” Opt. Express 18(7), 7190–7202 (2010).
[CrossRef] [PubMed]

N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, “Adjustment of supercontinua via the optical feedback phase – numerical investigations,” Opt. Express 18(20), 20667–20672 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
[CrossRef] [PubMed]

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006).
[CrossRef] [PubMed]

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008).
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13(19), 7535–7540 (2005).
[CrossRef] [PubMed]

H. Zhang, S. Yu, J. Zhang, and W. Gu, “Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths,” Opt. Express 15(3), 1147–1154 (2007).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. Lett. (2)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101(23), 233902 (2008).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24(11), 584–587 (1970).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Other (1)

N. K. T. Photonics, “NL-PM-750 data sheet,” http://www.nktphotonics.com/files/files/NL-PM-750-090612.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup: Signal beam (p-pol.,) and reference beam (s-pol., ) are coupled into the ring resonator. λ/2: half-wave plate, PBS: polarizing beam splitter, BS: pellicle beam splitter, MSF: microstructured fiber, MO: 40x microscope objective, GS: uncoated glass substrate. For more details see text. b) Overview of the observed regimes of nonlinear dynamics. The positions A, B and C are explained in the following section.

Fig. 2
Fig. 2

Phase dependent measurements at a delay position of 130 fs: a) bifurcation structures of the nonlinear dynamics in the radio frequency spectrum; b) corresponding optical spectra; c) different optical spectra within one P1 interval; d) different optical spectra within one P2 interval.

Fig. 3
Fig. 3

Phase dependent measurements at a delay position of 215 fs: a) bifurcation structures of the nonlinear dynamics in the radio frequency spectrum; b) corresponding optical spectra; c) different optical spectra within one P1 interval; d) different optical spectra within one LC interval.

Fig. 4
Fig. 4

Phase dependent measurements at a delay position of 270 fs: a) bifurcation structures of the nonlinear dynamics in the radio frequency spectrum; b) corresponding optical spectra.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = | + E ( t ) e i ω t d t | 2 = | E ˜ 0 ( ω ) + E ˜ 0 ( ω ) e i ω τ | 2 = 2 | E ˜ 0 | 2 ( 1 + cos ( ω τ ) ) .

Metrics