Abstract

A novel and completely tracer free strategy to image composition and velocity fields during the mixing process of two liquids is introduced. The achieved temporal resolution, spatial resolution and sampling rate of 30 ns, 54 x 54 µm2 and 10 kHz, respectively, are sufficient to resolve Kolmogorov time and length scales as well as transient mixing phenomena of many technical mixing processes. During the injection of liquid water into liquid ethanol, mixing was quantitatively observed by means of high repetition rate Raman imaging using a laser cluster for the excitation of the Raman process with 8 successive light sheet pulses. One high speed camera was used to detect the CH-vibration Raman band signal of ethanol, while a second one was used to detect the OH-vibration Raman band signal of water and ethanol. From the ratio of both, the mixture composition field was computed. The dense flow field was determined by processing the mixture composition images with a variational optical flow method.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
    [CrossRef]
  2. P. A. Davidson, Turbulence (Oxford University Press, Oxford, 2004).
  3. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
    [CrossRef]
  4. M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF,” Meas. Sci. Technol. 1289 (2000).
    [CrossRef]
  5. J. D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44(31), 6682–6691 (2005).
    [CrossRef] [PubMed]
  6. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31, 75–121 (2005).
    [CrossRef]
  7. M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
    [CrossRef]
  8. K. Kohse-Höinghaus, and J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, 2002).
  9. C. M. Fajardo, J. D. Smith, and V. Sick, “Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser,” Appl. Phys. B 85, 25–30 (2006).
    [CrossRef]
  10. J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” in SAE, Technical Paper Series 2007–01–0644 (SAE, 2007)
  11. S. Pfadler, M. Löffler, F. Dinkelacker, and A. Leipertz, “Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry,” Exp. Fluids 39, 375–384 (2005).
    [CrossRef]
  12. A. Braeuer, S. R. Engel, R. F. Hankel, and A. Leipertz, “Gas mixing analysis by simultaneous Raman imaging and particle image velocimetry,” Opt. Lett. 34(20), 3122–3124 (2009).
    [CrossRef] [PubMed]
  13. S. R. Engel, P. Koch, A. Braeuer, and A. Leipertz, “Simultaneous laser-induced fluorescence and Raman imaging inside a hydrogen engine,” Appl. Opt. 48(35), 6643–6650 (2009).
    [CrossRef] [PubMed]
  14. D. C. Kyritsis, F. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” IJAP 1, 174–189 (2007).
    [CrossRef]
  15. Y. Oshima, C. Furihata, and H. Sato, “Light sheet direct Raman imaging technique for observation of mixing of solvents,” Appl. Spectrosc. 63(10), 1115–1120 (2009).
    [CrossRef] [PubMed]
  16. C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
    [CrossRef]
  17. A. Leipertz, A. Braeuer, J. Kiefer, A. Dreizler, and C. Heeger, “Laser-Induced Fluorescence,” in Handbook of combustion, M. Lachner, F. Winter, and A. K. Agarwal, eds. (Wiley-VCH, Winheim, 2010).
  18. J. Kojima and Q.-V. Nguyen, “Laser pulse-stretching with multiple optical ring cavities,” Appl. Opt. 41(30), 6360–6370 (2002).
    [CrossRef] [PubMed]
  19. B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
    [CrossRef]
  20. J. Weickert and C. Schnörr, “A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion,” Int. J. Comput. Vis. 45, 245–264 (2001).
    [CrossRef]
  21. M. J. Black, and P. Anandan, “Robust dynamic motion estimation over time,” in Computer Vision and Pattern Recognition,1991. Proceedings CVPR '91., IEEE Computer Society Conference on, 1991), 296–302.
  22. M. J. Black and P. Anandan, “The Robust estimation of multiple motions: parametric and piecewise smooth flow field,” Comput. Vis. Image Underst. 63, 75–104 (1996).
    [CrossRef]

2009

2007

D. C. Kyritsis, F. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” IJAP 1, 174–189 (2007).
[CrossRef]

2006

C. M. Fajardo, J. D. Smith, and V. Sick, “Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser,” Appl. Phys. B 85, 25–30 (2006).
[CrossRef]

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

2005

J. D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44(31), 6682–6691 (2005).
[CrossRef] [PubMed]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

S. Pfadler, M. Löffler, F. Dinkelacker, and A. Leipertz, “Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry,” Exp. Fluids 39, 375–384 (2005).
[CrossRef]

2002

2001

J. Weickert and C. Schnörr, “A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion,” Int. J. Comput. Vis. 45, 245–264 (2001).
[CrossRef]

2000

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF,” Meas. Sci. Technol. 1289 (2000).
[CrossRef]

1999

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

1996

M. J. Black and P. Anandan, “The Robust estimation of multiple motions: parametric and piecewise smooth flow field,” Comput. Vis. Image Underst. 63, 75–104 (1996).
[CrossRef]

1981

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

Aldén, M.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Anandan, P.

M. J. Black and P. Anandan, “The Robust estimation of multiple motions: parametric and piecewise smooth flow field,” Comput. Vis. Image Underst. 63, 75–104 (1996).
[CrossRef]

Black, M. J.

M. J. Black and P. Anandan, “The Robust estimation of multiple motions: parametric and piecewise smooth flow field,” Comput. Vis. Image Underst. 63, 75–104 (1996).
[CrossRef]

Bracco, F. V.

D. C. Kyritsis, F. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” IJAP 1, 174–189 (2007).
[CrossRef]

Braeuer, A.

Branam, R.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Chehroudi, B.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Cohn, R.

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF,” Meas. Sci. Technol. 1289 (2000).
[CrossRef]

Dinkelacker, F.

S. Pfadler, M. Löffler, F. Dinkelacker, and A. Leipertz, “Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry,” Exp. Fluids 39, 375–384 (2005).
[CrossRef]

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Engel, S. R.

Fajardo, C. M.

C. M. Fajardo, J. D. Smith, and V. Sick, “Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser,” Appl. Phys. B 85, 25–30 (2006).
[CrossRef]

Felton, F. G.

D. C. Kyritsis, F. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” IJAP 1, 174–189 (2007).
[CrossRef]

Furihata, C.

Hankel, R. F.

Hanson, R. K.

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

Horn, B. K. P.

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

Hult, J.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Hussong, J.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

Koch, P.

Kojima, J.

Koochesfahani, M.

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF,” Meas. Sci. Technol. 1289 (2000).
[CrossRef]

Kyritsis, D. C.

D. C. Kyritsis, F. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” IJAP 1, 174–189 (2007).
[CrossRef]

Leipertz, A.

Löffler, M.

S. Pfadler, M. Löffler, F. Dinkelacker, and A. Leipertz, “Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry,” Exp. Fluids 39, 375–384 (2005).
[CrossRef]

MacKinnon, C.

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF,” Meas. Sci. Technol. 1289 (2000).
[CrossRef]

Nguyen, Q.-V.

Oschwald, M.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Oshima, Y.

Pfadler, S.

S. Pfadler, M. Löffler, F. Dinkelacker, and A. Leipertz, “Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry,” Exp. Fluids 39, 375–384 (2005).
[CrossRef]

Sato, H.

Schik, A.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Schnörr, C.

J. Weickert and C. Schnörr, “A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion,” Int. J. Comput. Vis. 45, 245–264 (2001).
[CrossRef]

Schulz, C.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Schunck, B. G.

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

Sick, V.

C. M. Fajardo, J. D. Smith, and V. Sick, “Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser,” Appl. Phys. B 85, 25–30 (2006).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

J. D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44(31), 6682–6691 (2005).
[CrossRef] [PubMed]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Smith, J. D.

C. M. Fajardo, J. D. Smith, and V. Sick, “Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser,” Appl. Phys. B 85, 25–30 (2006).
[CrossRef]

J. D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44(31), 6682–6691 (2005).
[CrossRef] [PubMed]

Smith, J. J.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Talley, D.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Thurber, M. C.

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

Weickert, J.

J. Weickert and C. Schnörr, “A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion,” Int. J. Comput. Vis. 45, 245–264 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. F. Kaminski, J. Hult, and M. Aldén, “High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame,” Appl. Phys. B 68, 757–760 (1999).
[CrossRef]

C. M. Fajardo, J. D. Smith, and V. Sick, “Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser,” Appl. Phys. B 85, 25–30 (2006).
[CrossRef]

M. C. Thurber and R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Appl. Spectrosc.

Artif. Intell.

B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981).
[CrossRef]

Combust. Sci. Technol.

M. Oschwald, J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley, “Injection of fluids into supercritical environments,” Combust. Sci. Technol. 178, 49–100 (2006).
[CrossRef]

Comput. Vis. Image Underst.

M. J. Black and P. Anandan, “The Robust estimation of multiple motions: parametric and piecewise smooth flow field,” Comput. Vis. Image Underst. 63, 75–104 (1996).
[CrossRef]

Exp. Fluids

S. Pfadler, M. Löffler, F. Dinkelacker, and A. Leipertz, “Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry,” Exp. Fluids 39, 375–384 (2005).
[CrossRef]

IJAP

D. C. Kyritsis, F. G. Felton, and F. V. Bracco, “Instantaneous, two-dimensional, spontaneous Raman measurements of hydrogen number density in a laminar jet using an intra-cavity configuration,” IJAP 1, 174–189 (2007).
[CrossRef]

Int. J. Comput. Vis.

J. Weickert and C. Schnörr, “A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion,” Int. J. Comput. Vis. 45, 245–264 (2001).
[CrossRef]

Meas. Sci. Technol.

M. Koochesfahani, R. Cohn, and C. MacKinnon, “Simultaneous whole-field measurements of velocity and concentration fields using a combination of MTV and LIF,” Meas. Sci. Technol. 1289 (2000).
[CrossRef]

Opt. Lett.

Pror. Energy Combust. Sci.

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Pror. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Other

K. Kohse-Höinghaus, and J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, 2002).

P. A. Davidson, Turbulence (Oxford University Press, Oxford, 2004).

J. Scholz, T. Wiersbinski, and V. Beushausen, “Planar fuel-air-ratio-LIF with gasoline for dynamic mixture-formation investigations,” in SAE, Technical Paper Series 2007–01–0644 (SAE, 2007)

A. Leipertz, A. Braeuer, J. Kiefer, A. Dreizler, and C. Heeger, “Laser-Induced Fluorescence,” in Handbook of combustion, M. Lachner, F. Winter, and A. K. Agarwal, eds. (Wiley-VCH, Winheim, 2010).

M. J. Black, and P. Anandan, “Robust dynamic motion estimation over time,” in Computer Vision and Pattern Recognition,1991. Proceedings CVPR '91., IEEE Computer Society Conference on, 1991), 296–302.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the high repetition rate Raman imaging experiment; (M: Mirror, BS: Beam splitter, SL: Spherical lens, CL: Cylindrical lens, MC: Measuring Chamber, BPF: Band pass filter, LPF: Long pass filter, HS-C: High-Speed Camera)

Fig. 2
Fig. 2

Calibrated Raman intensity ratio: ethanol mole fraction xEtOH as a function of the Raman intensity ratio ICH/IOH of the CH-vibration Raman band signal ICH and the OH-vibration Raman band signal IOH

Fig. 3
Fig. 3

Ethanol mole fraction xEtOH distribution during the injection of water in ethanol detected by 8 subsequent laser pulses

Fig. 4
Fig. 4

Composition and flow field distribution for the injection of water in ethanol. The ethanol mole fraction distribution (background color) corresponds to the second image in Fig. 3. The vector field corresponds to the displacement per time between the first two images in Fig. 3.

Metrics