Abstract

In this paper, we demonstrate and report a photonic crystal fiber (PCF) infiltrated with PDMS elastomer which is sensitive to external bending and temperature perturbations. Numerical simulations and experimental measurements were carried out to investigate the fundamental TIR-based guiding mechanism of the hybrid PDMS/silica PCF in terms of effective index, effective modal area and loss. Wavelength dependence of bending losses was also measured for different bend diameters as well as the temperature dependence of the fundamental guiding mode for a range of temperatures from 20°C to 75°C. Experimental measurements have shown a ~6% power recovery of the bend-induced loss for a 6-cm long PDMS-filled PCF at 4 cm bend diameter.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. A. Cerqueira S, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
    [CrossRef] [PubMed]
  3. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007).
    [CrossRef] [PubMed]
  4. T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003).
    [CrossRef]
  5. R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.
  6. C. M. Cordeiro, M. A. Franco, G. Chesini, E. C. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. Large, “Microstructured-core optical fibre for evanescent sensing applications,” Opt. Express 14(26), 13056–13066 (2006).
    [CrossRef] [PubMed]
  7. S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33(22), 2578–2580 (2008).
    [CrossRef] [PubMed]
  8. C. G. Poulton, M. A. Schmidt, G. J. Pearce, G. Kakarantzas, and P. St. J. Russell, “Numerical study of guided modes in arrays of metallic nanowires,” Opt. Lett. 32(12), 1647–1649 (2007).
    [CrossRef] [PubMed]
  9. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [CrossRef]
  10. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
    [CrossRef]
  11. Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010)
  12. J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
    [CrossRef]
  13. http://www.lumerical.com/fdtd.php
  14. N. H. Vu, I.-K. Hwang, and Y.-H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33(2), 119–121 (2008).
    [CrossRef] [PubMed]
  15. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
    [CrossRef]
  16. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  17. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
    [CrossRef]
  18. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13(16), 6015–6022 (2005).
    [CrossRef] [PubMed]
  19. T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15(21), 13547–13556 (2007).
    [CrossRef] [PubMed]
  20. W. F. Yeung and A. R. Johnston, “Effect of temperature on optical fiber transmission,” Appl. Opt. 17(23), 3703–3705 (1978).
    [CrossRef] [PubMed]
  21. H. R. Sørensen, J. Canning, J. Lægsgaard, and K. Hansen, “Control of the wavelength dependent thermo-optic coefficients in structured fibres,” Opt. Express 14(14), 6428–6433 (2006).
    [CrossRef] [PubMed]

2009 (2)

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
[CrossRef]

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[CrossRef]

2008 (2)

2007 (3)

2006 (3)

2005 (1)

2003 (2)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[CrossRef]

T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003).
[CrossRef]

2000 (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

1997 (2)

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[CrossRef] [PubMed]

1996 (1)

1978 (1)

Andrés, M. V.

Atkin, D. M.

Baggett, J. C.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[CrossRef]

Barretto, E. C.

Berghmans, F.

Bergveld, P.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Birks, T. A.

Bjarklev, A.

T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003).
[CrossRef]

Brito Cruz, C. H.

Broeng, J.

T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003).
[CrossRef]

Burdge, G. L.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

Canning, J.

Cerqueira S, A.

Chesini, G.

Cordeiro, C. M.

Cordeiro, C. M. B.

Cruz, J. L.

Demokan, M. S.

Díez, A.

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[CrossRef]

Eggleton, B. J.

B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

Finazzi, V.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[CrossRef]

Franco, M. A.

Furusawa, K.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[CrossRef]

George, A. K.

Golojuch, G.

Hale, A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

Hansen, K.

Hermann, D.

T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003).
[CrossRef]

Hwang, I.-K.

Jin, W.

Johnston, A. R.

Kakarantzas, G.

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[CrossRef]

Knight, J. C.

Kuhlmey, B. T.

Lægsgaard, J.

Large, M. C.

Larsen, T.

T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003).
[CrossRef]

Lee, Y.-H.

Lötters, J. C.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Luan, F.

Lwin, R.

Martynkien, T.

Monro, T. M.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[CrossRef]

Nasilowski, T.

Olszewski, J.

Olthuis, W.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Pearce, G. J.

Poulton, C. G.

Richardson, D. J.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[CrossRef]

Russell, P. St. J.

Schmidt, M. A.

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[CrossRef]

Sørensen, H. R.

Strasser, T. A.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

Szpulak, M.

Thienpont, H.

Torres-Peiró, S.

Urbanczyk, W.

Veltink, P. H.

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Vu, N. H.

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[CrossRef]

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

Windeler, R. S.

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

Wu, D. K. C.

Xiao, L.

Yeung, W. F.

Appl. Opt. (1)

Electron. Lett. (1)

T. Larsen, J. Broeng, D. Hermann, and A. Bjarklev, “Thermo-optic switching in liquid crystal infiltrated photonic bandgap fibres,” Electron. Lett. 39(24), 1719–1720 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, “Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings,” IEEE Photon. Technol. Lett. 12(5), 495–497 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

J. C. Lötters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7(3), 145–147 (1997).
[CrossRef]

Opt. Commun. (1)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227(4-6), 317–335 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Sens. Actuators A Phys. (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS,” Sens. Actuators A Phys. 151(2), 95–99 (2009).
[CrossRef]

Other (3)

http://www.lumerical.com/fdtd.php

Y. Fainman, L. P. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2010)

R. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, and B. J. Eggleton, “Tunable photonic band gap fiber,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper ThK3.

Supplementary Material (2)

» Media 1: MOV (372 KB)     
» Media 2: MOV (240 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning-electron microscope (SEM) image of: (a) a conventional ESM-PCF supplied from Crystal Fibre (b) hybrid PDMS/silica PCF. Side view optical micrographs of (c) all-silica PCF and (d) PDMS-filled PCF.

Fig. 2
Fig. 2

(a) Calculated fundamental mode profile of the hybrid PDMS/silica PCF at 633 and (b) 1550 nm wavelength. (c) Experimental near field fundamental mode field pattern at 633 nm wavelength, captured with a CCD camera. (d) Effective indices of the fundamental guiding mode of a conventional (black line) and hybrid PDMS/silica PCF (red line). (Refractive index of fused silica is also included into the plot for reference purposes).

Fig. 3
Fig. 3

Bending loss as a function of bend diameter at (a) 473, (b) 633 and (c) 1550 nm wavelength for a conventional and PDMS/silica PCF. (d) Measurement of bend loss variation as a function of wavelength for the case of hybrid PDMS/silica PCF at different bend diameters.

Fig. 4
Fig. 4

Index difference variation, Δneff of PDMS/silica PCF as a function of temperature at (a) 633 nm and (b) 1550 nm operating wavelength. (c) Effective modal areas at 633 and 1550 nm wavelength.

Fig. 5
Fig. 5

Single-frame(one per 10°C) excerpts from two separate simulation videos illustrating the partial reconstruction of the fundamental guiding mode of the hybrid PDMS/silica PCF as temperature increases from 20°C to 75°C for a bend diameter of 4 cm. Frames (a-f) correspond to 633 (Media 1) and (g-l) to 1550 nm wavelength (Media 2) (logarithmic scale).

Fig. 6
Fig. 6

Thermo-optic effect of PDMS-filled PCF for a bend diameter of 4 cm at (a) 633 and (b) 1550 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d C = 16 π 2 n C 2 ρ 3 λ 2 W 3

Metrics