Abstract

We present a new real-time automatic spectral calibration (ASC) method for Fourier domain optical coherence tomography (FD OCT) that can be automatically performed by the system. The ASC method proposed can be performed during OCT scanning operation and does not require an external calibrating light source or a commercial optical spectrum analyzer. Spectral data used for calibration can be interferograms obtained from an arbitrary sample which may have complicated internal structures, such as ones found in biological tissue. Moreover, our ASC method incorporates known robot motion to calibrate physical pixel spacing of the A-scan in static or dynamic environments. Experimental results show that our ASC method can provide high-performance calibration for FD OCT in terms of axial resolution and ranging accuracy without increasing hardware complexity.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
    [CrossRef] [PubMed]
  2. M. Balicki, J. Han, I. Iordachita, P. Gehlbach, J. Handa, J. U. Kang, and R. Taylor, “Single Fiber Optical Coherence Tomography Microsurgical Instruments for Computer and Robot-Assisted Retinal Surgery,” Proceedings of the MICCAI Conference, London, pp. 108–115 (2009)
  3. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
    [CrossRef] [PubMed]
  4. J. Han, M. Balicki, K. Zhang, X. Liu, J. Handa, R. Taylor, and J. U. Kang, “Common-path Fourier-domain Optical Coherence Tomography with a Fiber Optic Probe Integrated Into a Surgical Needle,” Proceedings of CLEO Conference (2009)
  5. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
    [CrossRef] [PubMed]
  6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  7. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
    [CrossRef] [PubMed]
  8. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 .
    [CrossRef] [PubMed]
  9. X. Li, J. H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47(27), 4833–4840 (2008).
    [CrossRef] [PubMed]
  10. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Quantum Electron. 11, 11799–11805 (2005).
  11. X. Liu, X. Li, D. Kim, I. Ilev, and J. U. Kang, “Fiber-optic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6(12), 899–901 (2008).
    [CrossRef]
  12. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  13. B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).
  14. Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10049 .
    [CrossRef] [PubMed]
  15. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
    [CrossRef] [PubMed]
  16. C. Ding, P. Bu, X. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).
  17. E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography,” J. Biomed. Opt. 15(1), 016005 (2010).
    [CrossRef] [PubMed]
  18. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-9-9511 .
    [CrossRef] [PubMed]
  19. N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13624 .
    [CrossRef] [PubMed]
  20. A. Uneri, M. Balicki, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “New Steady-Hand Eye Robot with Microforce Sensing for Vitreoretinal Surgery Research,” IEEE BioRob (2010).
  21. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
    [CrossRef] [PubMed]
  22. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6121 .
    [CrossRef] [PubMed]
  23. X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
    [CrossRef]
  24. J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
    [CrossRef]
  25. Z. Xu, L. Carrion, and R. Maciejko, “A zero-crossing detection method applied to Doppler OCT,” Opt. Express 16(7), 4394–4412 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4394 .
    [CrossRef] [PubMed]
  26. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 .
    [CrossRef] [PubMed]

2010

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010).
[CrossRef] [PubMed]

C. Ding, P. Bu, X. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography,” J. Biomed. Opt. 15(1), 016005 (2010).
[CrossRef] [PubMed]

J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-9-9511 .
[CrossRef] [PubMed]

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

2009

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

2008

2007

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6121 .
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

2005

2004

2003

Akiba, M.

Azimi, E.

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography,” J. Biomed. Opt. 15(1), 016005 (2010).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography,” J. Biomed. Opt. 15(1), 016005 (2010).
[CrossRef] [PubMed]

Bu, P.

C. Ding, P. Bu, X. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).

Carrion, L.

Cense, B.

Chen, L. Y.

Chen, T.

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

Chen, Y. R.

Choma, M.

de Boer, J.

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Ding, C.

C. Ding, P. Bu, X. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Duker, J.

Ehlers, J. P.

Fercher, A.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Ferguson, R. D.

Ferrante, A. A.

Fried, N. M.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Quantum Electron. 11, 11799–11805 (2005).

Fujimoto, J.

Gehlbach, P.

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

Hammer, D. X.

Han, J.

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Han, J. H.

Han, S.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Han, T.

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Hong, Y.

Humayun, M.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Huo, L.

Iftimia, N. V.

Ilev, I.

Izatt, J.

Izatt, J. A.

Kang, J. U.

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

X. Liu, X. Li, D. Kim, I. Ilev, and J. U. Kang, “Fiber-optic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6(12), 899–901 (2008).
[CrossRef]

X. Li, J. H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47(27), 4833–4840 (2008).
[CrossRef] [PubMed]

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Quantum Electron. 11, 11799–11805 (2005).

Kim, D.

Ko, T.

Kong, Y. F.

Kowalczyk, A.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Leitgeb, R.

Li, J.

Li, X.

Li, X. F.

Liu, B.

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography,” J. Biomed. Opt. 15(1), 016005 (2010).
[CrossRef] [PubMed]

Liu, X.

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

X. Li, J. H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47(27), 4833–4840 (2008).
[CrossRef] [PubMed]

X. Liu, X. Li, D. Kim, I. Ilev, and J. U. Kang, “Fiber-optic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6(12), 899–901 (2008).
[CrossRef]

Maciejko, R.

Makita, S.

Meisne, E.

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

Miura, M.

Mujat, M.

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13624 .
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

Nassif, N.

Park, B.

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Pierce, M.

Pierce, M. C.

Sarunic, M.

Sarunic, M. V.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Sasaki, O.

C. Ding, P. Bu, X. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).

Sharma, U.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Quantum Electron. 11, 11799–11805 (2005).

Song, C.

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

Srinivasan, V.

Sun, B.

Tao, Y. K.

Taylor, R.

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

Tearney, G.

Tearney, G. J.

Toth, C. A.

Vu, D.

Wang, S. Y.

Wang, W.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Wang, X.

C. Ding, P. Bu, X. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).

Wojtkowski, M.

Wu, J.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Xi, J.

Xu, C. H.

Xu, Z.

Yamanari, M.

Yang, C.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zhang, K.

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Zheng, Y. X.

Zhou, P.

Appl. Opt.

Chin. Opt. Lett.

IEEE J. Quantum Electron.

U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Quantum Electron. 11, 11799–11805 (2005).

IEEE J. Sel. Top. Quantum Electron.

J. U. Kang, J. Han, X. Liu, K. Zhang, C. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Coherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron. 16(4), 781–792 (2010), doi:.
[CrossRef]

IEEE Trans. Biomed. Eng.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography,” J. Biomed. Opt. 15(1), 016005 (2010).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

Opt. Express

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6121 .
[CrossRef] [PubMed]

Z. Xu, L. Carrion, and R. Maciejko, “A zero-crossing detection method applied to Doppler OCT,” Opt. Express 16(7), 4394–4412 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4394 .
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 .
[CrossRef] [PubMed]

Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10049 .
[CrossRef] [PubMed]

J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-Source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-9-9511 .
[CrossRef] [PubMed]

N. V. Iftimia, D. X. Hammer, R. D. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16(18), 13624–13636 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-13624 .
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

Opt. Lett.

Optik (Stuttg.)

C. Ding, P. Bu, X. Wang, and O. Sasaki, “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik (Stuttg.) 121(11), 965–970 (2010).

Proc. SPIE

X. Liu, E. Meisne, J. Han, K. Zhang, P. Gehlbach, and R. Taylor, “Internal limiting membrane layer visualization and vitreoretinal surgery guidance using OCT integrated microsurgical tool,” Proc. SPIE 7550, 755003 (2010).
[CrossRef]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Other

B. E. Bouma, and G. J. Tearney, Handbook of Optical Coherence Tomography, (Marcel Dekker, New York, 2002).

A. Uneri, M. Balicki, J. Handa, P. Gehlbach, R. Taylor, and I. Iordachita, “New Steady-Hand Eye Robot with Microforce Sensing for Vitreoretinal Surgery Research,” IEEE BioRob (2010).

M. Balicki, J. Han, I. Iordachita, P. Gehlbach, J. Handa, J. U. Kang, and R. Taylor, “Single Fiber Optical Coherence Tomography Microsurgical Instruments for Computer and Robot-Assisted Retinal Surgery,” Proceedings of the MICCAI Conference, London, pp. 108–115 (2009)

J. Han, M. Balicki, K. Zhang, X. Liu, J. Handa, R. Taylor, and J. U. Kang, “Common-path Fourier-domain Optical Coherence Tomography with a Fiber Optic Probe Integrated Into a Surgical Needle,” Proceedings of CLEO Conference (2009)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of CP FD OCT and robot system.

Fig. 2
Fig. 2

(a) Wavenumber versus pixel index; (b) simulated interferometric fringes in pixel space; (c) A-scan corresponding to spectrum in Fig. 2(b); differences between k(n) and k ˜ ( n ) , k(n) and p(n), k(n) and the 4th order polynomial fits of p(n) for data generated with R equals 0.1(d), 0.2(e), and 0.3(f).

Fig. 3
Fig. 3

(a) Interferometric fringes detected at the center part of CCD (red, original spectrum; black, spectrum after bandpass filtering; blue circles, zero-crossing points); (b) initial wavenumber mapping using zero-crossing detection; (c) difference between the initial estimation of wavenumber mapping and the wavenumber mapping that maximizes A-scan sharpness; (d) interferometric fringes obtained from multilayered phantom, in pixel space (blue) and k-space (red). (e) A-scan corresponding to the spectrum in Fig. 3(d).

Fig. 4
Fig. 4

(a) M-scan obtained when scanning the OCT probe axially above a multilayered phantom; (b) robot motion derived from OCT signal in the unit of pixel (upper); commanded robot motion in the unit of mm(lower); (c) ranging error based on regression using Fig. 4(b); (d) M-scan obtained when the OCT probe was modulated sinusoidally and the sample was nonstatic; (e) peak indices of OCT signal (upper) and its frequency analysis result (lower); (f) robot motion derived from OCT signal in the unit of pixel (upper); commanded robot motion in mm (lower); (g) ranging error based on regression of Fig. 4(f).

Fig. 5
Fig. 5

(a) PSFs obtained without calibration; (b) PSFs obtained with calibration based on the initial estimation of the 4th order polynomial; (c) PSFs obtained with calibration based on the 4th order polynomial that maximizes the image sharpness; (d) FWHM resolution at different depths based on initial estimation of polynomial (blue) and the polynomial that maximizes the signal sharpness (red).

Fig. 6
Fig. 6

(a) ground truth spectral mapping obtained from a mirror: wavenumber versus pixel index in our spectrometer; (b) FWHM resolution at different depths using interferograms from a multilayered phantom by ASC (blue) and from a mirror by extracting the phase (red).

Fig. 7
Fig. 7

Image of multilayer phantom obtained with (a) and without (b) ASC.

Fig. 8
Fig. 8

(a) A-scans based on ground truth calibration and ASC; (b) OCT image (logarithmic scale) of human forearm skin, based on ground truth calibration(SC: stratum corneum; epidermis: EP; dermis: DE); (c) OCT image (logarithmic scale) of human forearm skin, based on our automatic calibration using sample interferogram.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S n = α S 0 ( k n ) m [ R m cos ( 2 k n l m ) ]
k n = a 4 n 4 + a 3 n 3 + a 2 n 2 + a 1 n + a 0
  n m = n 1 S n 1 + 1 - ( n 1 + 1 ) S n 1 S n 1 + 1 - S n 1
k ( n m ) = m δ k + k 0
k ˜ ( n m ) = k ( n m ) k 0 δ k
Δ z= π η Δ k
Z = i Δ z+z 0
Z 0 sin ( ω t ) + Z S ( t ) = i ( t ) Δ z+z 0
Z 0 sin ( ω t ) = i ^ Δ z + z ^ 0

Metrics