Abstract

Photodetecting fibers of arbitrary length with internal metal, semiconductor and insulator domains have recently been demonstrated. These semiconductor devices exhibit a continuous translational symmetry which presents challenges to the extraction of spatially resolved information. Here, we overcome this seemingly fundamental limitation and achieve the detection and spatial localization of a single incident optical beam at sub-centimeter resolution, along a one-meter fiber section. Using an approach that breaks the axial symmetry through the constuction of a convex electrical potential along the fiber axis, we demonstrate the full reconstruction of an arbitrary rectangular optical wave profile. Finally, the localization of up to three points of illumination simultaneously incident on a photodetecting fiber is achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Yu, and S. Yin, Fiber Optic Sensors, (Marcel-Dekker, 2008).
  2. K. T. V. Grattan, and B. T. Meggitt, eds., Optical Fiber Sensor Technology, Fundamentals, (Kluwer Academic Publishers, Boston, 2000).
  3. A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10(8), 201 (1999).
    [CrossRef]
  4. A. Othonos, and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing, (Artech House, Boston, 1999).
  5. M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel technique for investigating attenuation characteristics,” Appl. Opt. 15(9), 2112–2115 (1976).
    [CrossRef] [PubMed]
  6. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20(6), 1060–1074 (1981).
    [CrossRef] [PubMed]
  7. A. H. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
    [CrossRef]
  8. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985).
    [CrossRef]
  9. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [CrossRef] [PubMed]
  10. C. I. Merzbacher, A. D. Kersey, and E. J. Friebele, “Fiber optic sensors in concrete structures: a review,” Smart Mater. Struct. 5(2), 196–208 (1996).
    [CrossRef]
  11. X. Bao, D. J. Webb, and D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19(2), 141 (1994).
    [CrossRef] [PubMed]
  12. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [CrossRef] [PubMed]
  13. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  14. B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
    [CrossRef]
  15. B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008).
    [CrossRef]
  16. M. Fokine, L. E. Nilsson, A. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett. 27(18), 1643–1645 (2002).
    [CrossRef]
  17. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [CrossRef]
  18. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [CrossRef] [PubMed]
  19. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
    [CrossRef] [PubMed]
  20. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
    [CrossRef] [PubMed]
  21. M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
    [CrossRef]
  22. F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
    [CrossRef]
  23. A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
    [CrossRef] [PubMed]
  24. F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
    [CrossRef] [PubMed]
  25. S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
    [CrossRef] [PubMed]
  26. M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
    [CrossRef]
  27. M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
    [CrossRef]
  28. E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of Carbon-polymer composite,” J. Electron. Mater. 11(4), 699–747 (1982).
    [CrossRef]
  29. N. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Multimaterial Fiber Diodes via in situ Compound Synthesis,” (manuscript under review).
  30. E. Rosencher, and B. Vinter, Optoelectronics, (Cambridge University Press, New York, 2002).
  31. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. (John Wiley, New York, 2001).
  32. R. H. Kingston, Detection of Optical and Infrared Radiation, (Springer-Verlag, Berlin, New York, 1978).
  33. Z. U. Borisova, Glassy Semiconductors, (Plenum Press, New York,1981).
  34. S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
    [CrossRef] [PubMed]
  35. D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
    [CrossRef]

2010 (2)

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

2009 (1)

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

2008 (4)

B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[CrossRef] [PubMed]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

2007 (3)

B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
[CrossRef]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

2006 (4)

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
[CrossRef]

2005 (1)

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

2004 (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

1999 (1)

A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10(8), 201 (1999).
[CrossRef]

1996 (1)

C. I. Merzbacher, A. D. Kersey, and E. J. Friebele, “Fiber optic sensors in concrete structures: a review,” Smart Mater. Struct. 5(2), 196–208 (1996).
[CrossRef]

1994 (1)

1990 (1)

1985 (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985).
[CrossRef]

1983 (1)

A. H. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
[CrossRef]

1982 (1)

E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of Carbon-polymer composite,” J. Electron. Mater. 11(4), 699–747 (1982).
[CrossRef]

1981 (1)

1976 (1)

Abouraddy, A. F.

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

An, K. H.

B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
[CrossRef]

Arnold, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
[CrossRef]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Bao, X.

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Barnoski, M. K.

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

Berlemont, D.

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985).
[CrossRef]

Bjarklev, A.

Broeng, J.

Chocat, N.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

Claesson, A.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985).
[CrossRef]

Danto, S.

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

Deng, D. S.

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Egusa, S.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

Fink, Y.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Fokine, M.

Friebele, E. J.

C. I. Merzbacher, A. D. Kersey, and E. J. Friebele, “Fiber optic sensors in concrete structures: a review,” Smart Mater. Struct. 5(2), 196–208 (1996).
[CrossRef]

Gittleman, J. I.

E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of Carbon-polymer composite,” J. Electron. Mater. 11(4), 699–747 (1982).
[CrossRef]

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Hartog, A. H.

A. H. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
[CrossRef]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Hermann, D. S.

Hinczewski, D. S.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

Horiguchi, T.

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Jackson, D. A.

Jensen, S. M.

Joannopoulos, J. D.

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
[CrossRef]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Kersey, A. D.

C. I. Merzbacher, A. D. Kersey, and E. J. Friebele, “Fiber optic sensors in concrete structures: a review,” Smart Mater. Struct. 5(2), 196–208 (1996).
[CrossRef]

Kjellberg, L.

Krummenacher, L.

Kurashima, T.

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

Larsen, T. T.

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Margulis, W.

Merzbacher, C. I.

C. I. Merzbacher, A. D. Kersey, and E. J. Friebele, “Fiber optic sensors in concrete structures: a review,” Smart Mater. Struct. 5(2), 196–208 (1996).
[CrossRef]

Nilsson, L. E.

O'Connor, B.

B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008).
[CrossRef]

B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
[CrossRef]

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

Orf, N. D.

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Orf1, N. D.

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

Pipe, K. P.

B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008).
[CrossRef]

B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985).
[CrossRef]

Prill Sempere, L.

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Rakich, P. T.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

Rogers, A.

A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10(8), 201 (1999).
[CrossRef]

Rogers, A. J.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985).
[CrossRef]

Ruff, Z. M.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

Russell, P. S.

Saygin-Hinczewski, D.

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Schmidt, M. A.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[CrossRef] [PubMed]

Shapira, O.

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

Shemuly, D.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

Sheng, P.

E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of Carbon-polymer composite,” J. Electron. Mater. 11(4), 699–747 (1982).
[CrossRef]

Shtein, M.

B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008).
[CrossRef]

B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
[CrossRef]

Sichel, E. K.

E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of Carbon-polymer composite,” J. Electron. Mater. 11(4), 699–747 (1982).
[CrossRef]

Sorin, F.

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Speakman, S. A.

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

Spencer, M.

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

St, P.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Stolyarov, A. M.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Stone, H. A.

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Tateda, M.

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

Tyagi, H. K.

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Viens, J.

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Wang, Z.

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

Webb, D. J.

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Zhao, Y.

B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
[CrossRef]

Adv. Mater. (4)

F. Sorin, A. F. Abouraddy, N. Orf, O. Shapira, J. Viens, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Multimaterial Photodetecting Fibers: a Geometric and Structural Study,” Adv. Mater. 19(22), 3872–3877 (2007).
[CrossRef]

M. Bayindir, A. F. Abouraddy, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Thermal-Sensing Fiber Devices by Multimaterial Codrawing,” Adv. Mater. 18, 845 (2006).
[CrossRef]

S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. 22(37), 4162–4166 (2010).
[CrossRef] [PubMed]

B. O'Connor, K. H. An, Y. Zhao, K. P. Pipe, and M. Shtein, “Fiber Shaped Organic Light Emitting Device,” Adv. Mater. 19(22), 3897–3900 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

B. O'Connor, K. P. Pipe, and M. Shtein, “Fiber based organic photovoltaic devices,” Appl. Phys. Lett. 92(19), 193306 (2008).
[CrossRef]

Electron. Lett. (1)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fiber raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21(13), 569 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Bayindir, A. F. Abouraddy, O. Shapira, J. Viens, D. Saygin-Hinczewski, F. Sorin, J. Arnold, J. D. Joannopoulos, and Y. Fink, “Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1202–1213 (2006).
[CrossRef]

J. Electron. Mater. (1)

E. K. Sichel, J. I. Gittleman, and P. Sheng, “Electrical properties of Carbon-polymer composite,” J. Electron. Mater. 11(4), 699–747 (1982).
[CrossRef]

J. Lightwave Technol. (1)

A. H. Hartog, “A distributed temperature sensor based on liquid-core optical fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
[CrossRef]

Meas. Sci. Technol. (1)

A. Rogers, “Distributed optical-fiber sensing,” Meas. Sci. Technol. 10(8), 201 (1999).
[CrossRef]

Nano Lett. (2)

F. Sorin, O. Shapira, A. F. Abouraddy, M. Spencer, N. D. Orf1, J. D. Joannopoulos, and Y. Fink, “Exploiting the collective effects of optoelectronic devices integrated in a single fiber,” Nano Lett. 9(7), 2630–2635 (2009).
[CrossRef] [PubMed]

D. S. Deng, N. D. Orf, A. F. Abouraddy, A. M. Stolyarov, J. D. Joannopoulos, H. A. Stone, and Y. Fink, “In-fiber semiconductor filament arrays,” Nano Lett. 8(12), 4265–4269 (2008).
[CrossRef]

Nat. Mater. (4)

S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov, D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos, and Y. Fink, “Multimaterial piezoelectric fibres,” Nat. Mater. 9(8), 643–648 (2010).
[CrossRef] [PubMed]

M. Bayindir, O. Shapira, D. Saygin-Hinczewski, J. Viens, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, “Integrated fibers for self-monitored optical transport,” Nat. Mater. 4(11), 820–825 (2005).
[CrossRef]

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nat. Mater. 5(7), 532–536 (2006).
[CrossRef] [PubMed]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nat. Mater. 6(5), 336–347 (2007).
[CrossRef] [PubMed]

Nature (1)

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St, “J. Russell, “Wave guiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[CrossRef] [PubMed]

Smart Mater. Struct. (1)

C. I. Merzbacher, A. D. Kersey, and E. J. Friebele, “Fiber optic sensors in concrete structures: a review,” Smart Mater. Struct. 5(2), 196–208 (1996).
[CrossRef]

Other (8)

N. Orf, O. Shapira, F. Sorin, S. Danto, M. A. Baldo, J. D. Joannopoulos, and Y. Fink, “Multimaterial Fiber Diodes via in situ Compound Synthesis,” (manuscript under review).

E. Rosencher, and B. Vinter, Optoelectronics, (Cambridge University Press, New York, 2002).

S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed. (John Wiley, New York, 2001).

R. H. Kingston, Detection of Optical and Infrared Radiation, (Springer-Verlag, Berlin, New York, 1978).

Z. U. Borisova, Glassy Semiconductors, (Plenum Press, New York,1981).

A. Othonos, and K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing, (Artech House, Boston, 1999).

F. Yu, and S. Yin, Fiber Optic Sensors, (Marcel-Dekker, 2008).

K. T. V. Grattan, and B. T. Meggitt, eds., Optical Fiber Sensor Technology, Fundamentals, (Kluwer Academic Publishers, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A(1). 3D Schematic of the multimaterial fiber thermal drawing fabrication approach. A(2). Schematic of a connected photodetecting fiber with an illumination event. The graph represents the linear current density in the dark and under the represented illumination. B. Scanning Electron Microscope micrograph of the fiber cross-section (inset: zoom-in on the contact between the core and the CPC electrode); C. Schematic of the fiber system’s equivalent circuit.

Fig. 2
Fig. 2

(A) Schematic of the fiber contact for boundary conditions (1) and graph representing the experimental results (dots) and the fitted theoretical model (lines) of the voltage profile between the CPC electrode and the metallic conduct at different points along the fiber axis, when the fiber is under BC(1) and for different fibers: in black, AST10 thin-film; in blue, AST10 core and in red, AST18. (B) Same as (A) but when the fiber is under BC(2).

Fig. 3
Fig. 3

A: SEM micrograph of a fiber with the new thin-film/solid-core structure. B: Experimental results (dots, the lines are added for clarity) of the voltage profile of a one-meter long fiber piece from panel A in the dark (in blue), and under a spot of white light (in red) and green light (in green) at the same location, same width and of similar intensity. C: schematic of the electrical connection to one fiber end.

Fig. 4
Fig. 4

Schematic of the illuminated fiber by a single optical beam and graph of the real position (black dashed line) and reconstructed position with error bars(blue dots) of an optifcal beam incident on a 1 m-long fiber at different positions. (B) Schematic of the illuminated fiber by a rectangular optical wave front. And graph of the real profile (black doted line) and reconstructed profile (blue dots) of a rectangular wave front incident on the same fiber.

Fig. 5
Fig. 5

(A) Schematic: photodetecting fiber illuminated by two similar optical beams. Graph: position measurements of the two beams. In black doted line is the conductivity profile generated by the two incoming beams while the blue dots are the reconstructed positions with the error bars. (B) Schematic: photodetecting fiber illuminated by three similar optical beams. Graph: position measurements of the three beams. In black doted line is the conductivity profile generated by the three incoming beams while the blue dots are the reconstructed positions with the error bars.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

V ( z ) V ( z d z ) R C P C = V ( z + d z ) V ( z ) R C P C V ( z ) R g ,   or   2 V z 2 = R C P C R g d z 2 V ( z )
2 V z 2 = V ( z ) δ ( z ) 2
δ ( z ) = ρ g ( z ) ρ c p c π 2 S c p c
V B C 1 ( z ) = V 0 cosh ( L z δ ) cosh ( L δ )
V B C 2 ( z ) = V 0 sinh h ( L z δ ) + V L sinh h ( z δ ) sinh ( L δ )
2 V z 2 = V ( 1 δ c 2 + 1 δ f 2 ) V δ c 2
V I ( z ) = V sinh ( L / δ c ) sinh h ( L z δ )
V I I ( z ) = V sinh ( L / δ c ) sinh h ( z δ )
i p h I = 2 C V σ p h sinh ( L / δ c ) sinh h ( L z 0 δ c ) sinh h ( Δ z δ c )
i p h I I = 2 C V σ p h sinh ( L / δ c ) sinh h ( z 0 δ c ) sinh h ( Δ z δ c )
i p h I I I = 2 C V σ p h Δ z
z 0 = δ c 2 ln [ e L / δ c + r e L / δ c + r ]
i p h I = 4 C V σ p h sinh ( L / δ c ) sinh h ( Δ z δ c ) sinh h ( L Z m δ c ) sinh h ( Z D δ c )
i p h I I = 4 C V σ p h sinh ( L / δ c ) sinh h ( Δ z δ c ) sinh h ( Z m δ c ) sinh h ( Z D δ c )
i p h I I I = 4 C V σ p h Δ z

Metrics