Abstract

We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
    [CrossRef] [PubMed]
  3. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(Pt 3), 229–236 (1993).
    [CrossRef] [PubMed]
  4. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [CrossRef] [PubMed]
  5. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
    [CrossRef] [PubMed]
  6. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [CrossRef] [PubMed]
  7. J. A. N. Buytaert and J. J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt. 12(1), 014039 (2007).
    [CrossRef] [PubMed]
  8. J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
    [CrossRef] [PubMed]
  9. E. G. Reynaud, U. Krzic, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
    [CrossRef]
  10. W. T. Welford, “Use of Annular Apertures to Increase Focal Depth,” J. Opt. Soc. Am. 50(8), 749–753 (1960).
    [CrossRef]
  11. J. W. Y. Lit and R. Tremblay, “Focal Depth of a Transmitting Axicon,” J. Opt. Soc. Am. 63(4), 445–449 (1973).
    [CrossRef]
  12. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  13. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
    [CrossRef]
  14. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [CrossRef] [PubMed]
  15. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics (2010), doi: .
    [CrossRef]
  16. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
    [CrossRef] [PubMed]
  17. A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett. 34(19), 3041–3043 (2009).
    [CrossRef] [PubMed]
  18. R. D. L. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
    [CrossRef] [PubMed]
  19. C. W. McCutchen, “Generalized Aperture and the Three-Dimensional Diffraction Image,” J. Opt. Soc. Am. 54(2), 240–244 (1964).
    [CrossRef]
  20. Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31(11), 1675–1677 (2006).
    [CrossRef] [PubMed]
  21. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
    [CrossRef] [PubMed]
  22. M. Agour, E. Kolenovic, C. Falldorf, and C. von Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A 11, 105405 (2009).
    [CrossRef]
  23. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47(12), 2076–2081 (2008).
    [CrossRef] [PubMed]

2010

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[CrossRef] [PubMed]

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics (2010), doi: .
[CrossRef]

2009

R. D. L. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[CrossRef] [PubMed]

M. Agour, E. Kolenovic, C. Falldorf, and C. von Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A 11, 105405 (2009).
[CrossRef]

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett. 34(19), 3041–3043 (2009).
[CrossRef] [PubMed]

2008

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[CrossRef] [PubMed]

E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47(12), 2076–2081 (2008).
[CrossRef] [PubMed]

E. G. Reynaud, U. Krzic, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

2007

J. A. N. Buytaert and J. J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt. 12(1), 014039 (2007).
[CrossRef] [PubMed]

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[CrossRef] [PubMed]

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

2006

2004

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

2002

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

1998

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[CrossRef]

1993

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(Pt 3), 229–236 (1993).
[CrossRef] [PubMed]

1987

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

1973

1964

1960

Agour, M.

M. Agour, E. Kolenovic, C. Falldorf, and C. von Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A 11, 105405 (2009).
[CrossRef]

Becker, K.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Bernet, S.

Bouchal, Z.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[CrossRef]

Burns, D. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(Pt 3), 229–236 (1993).
[CrossRef] [PubMed]

Buytaert, J. A. N.

J. A. N. Buytaert and J. J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt. 12(1), 014039 (2007).
[CrossRef] [PubMed]

Chlup, M.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[CrossRef]

Deininger, K.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Deussing, J. M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Dholakia, K.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Dirckx, J. J. J.

J. A. N. Buytaert and J. J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt. 12(1), 014039 (2007).
[CrossRef] [PubMed]

Dodt, H. U.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eder, M.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Egelhaaf, S. U.

R. D. L. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[CrossRef] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics (2010), doi: .
[CrossRef]

Falldorf, C.

M. Agour, E. Kolenovic, C. Falldorf, and C. von Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A 11, 105405 (2009).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Greger, K.

E. G. Reynaud, U. Krzic, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef]

Grier, D. G.

Hanes, R. D. L.

R. D. L. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[CrossRef] [PubMed]

Huisken, J.

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Jährling, N.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Jenkins, M. C.

R. D. L. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[CrossRef] [PubMed]

Jesacher, A.

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Kolenovic, E.

M. Agour, E. Kolenovic, C. Falldorf, and C. von Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A 11, 105405 (2009).
[CrossRef]

Krzic, U.

E. G. Reynaud, U. Krzic, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef]

Leischner, U.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Lit, J. W. Y.

Mauch, C. P.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Maurer, C.

McCutchen, C. W.

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Mosk, A. P.

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[CrossRef] [PubMed]

Pampaloni, F.

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[CrossRef] [PubMed]

Reynaud, E. G.

E. G. Reynaud, U. Krzic, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef]

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[CrossRef] [PubMed]

Ritsch-Marte, M.

Rohrbach, A.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics (2010), doi: .
[CrossRef]

A. Rohrbach, “Artifacts resulting from imaging in scattering media: a theoretical prediction,” Opt. Lett. 34(19), 3041–3043 (2009).
[CrossRef] [PubMed]

Roichman, Y.

Schierloh, A.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Schwaighofer, A.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Simon, P.

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics (2010), doi: .
[CrossRef]

Spelman, F. A.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(Pt 3), 229–236 (1993).
[CrossRef] [PubMed]

Stainier, D. Y.

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

Stainier, D. Y. R.

Stelzer, E. H.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

Stelzer, E. H. K.

E. G. Reynaud, U. Krzic, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef]

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Tremblay, R.

van Putten, E. G.

Vellekoop, I. M.

Voie, A. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(Pt 3), 229–236 (1993).
[CrossRef] [PubMed]

von Kopylow, C.

M. Agour, E. Kolenovic, C. Falldorf, and C. von Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A 11, 105405 (2009).
[CrossRef]

Wagner, J.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[CrossRef]

Welford, W. T.

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Zieglgänsberger, W.

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Development

J. Huisken and D. Y. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009).
[CrossRef] [PubMed]

HFSP J

E. G. Reynaud, U. Krzic, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J 2(5), 266–275 (2008).
[CrossRef]

J. Biomed. Opt.

J. A. N. Buytaert and J. J. J. Dirckx, “Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution,” J. Biomed. Opt. 12(1), 014039 (2007).
[CrossRef] [PubMed]

J. Microsc.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(Pt 3), 229–236 (1993).
[CrossRef] [PubMed]

J. Opt. A

M. Agour, E. Kolenovic, C. Falldorf, and C. von Kopylow, “Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator,” J. Opt. A 11, 105405 (2009).
[CrossRef]

J. Opt. Soc. Am.

Nat. Methods

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010).
[CrossRef] [PubMed]

H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007).
[CrossRef] [PubMed]

Nat. Photonics

F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photonics (2010), doi: .
[CrossRef]

Nat. Rev. Mol. Cell Biol.

F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[CrossRef] [PubMed]

Nature

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Opt. Commun.

Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun. 151(4-6), 207–211 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

R. D. L. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[CrossRef] [PubMed]

Science

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic drawing of the setup. For explanation and acronyms see body text of section 2.

Fig. 2
Fig. 2

Photographs of the sample holder and positioner. The sample (S) is fixed in an agarose gel cylinder (G) held by a sample holder (SH) that can be rotated by a rotating sample holder (RSH). It is introduced through a hole in a flexible membrane (Me) into the sample chamber (C) that holds the sample in the immersion liquid. Beams focused by the illumination objective (IO) and scanned in the focal plane of the detection objective lens (DO) excite fluorophores only in a thin layer within the sample.

Fig. 3
Fig. 3

Radial Intensity of three beams with equal depth of focus Δz = 100µm. A Gaussian beam (NA = 0.11) shown in blue, and two Bessel beams (NA = 0.24, ε = 0.8 and NA = 0.34 & ε = 0.9) shown in red and green, respectively. A normalization of W(r) was applied so that all beams carry the same amount of energy up to the radius of a conventional beam. In this case r(NA = 0.11) = 2.7µm.

Fig. 4
Fig. 4

Scheme for the separation of hologram diffraction pattern from background created by the pixellation of the SLM’s display. The figure shows an example for an axicon hologram. A blazed grating ϕbg(x,y) = x·a is added to shift the hologram’s far-field diffraction image between 0th and 1st order caused by the SLM’s pixellation. A cross-section of the far-field diffraction intensity for an axicon without and with an additional blazed grating is shown in part (a) and (c), respectively. A sketch of the optical path is shown in (b). All unwanted intensity like higher orders can be removed by a circular stop shown in gray in (c).

Fig. 5
Fig. 5

The optical path for holographic beam shaping and positioning. The figure shows the generation of Bessel (a) and Gaussian beams (b) by applying adequate spatial phase distributions ϕ(r) (shown in red and as insets) on the beam using the SLM. A telecentric 4f lens system images a virtual beam created by the SLM (placed in a distance d<f1 to the lens L1) into the sample volume. A conical phase with ring-shaped aperture (shown in red) is used for Bessel beams (a). For Gaussian beams, a spherical phase with a circular aperture is applied (b). Beams with short and long depth of field zend-zstart are shown in green and blue, respectively.

Fig. 6
Fig. 6

Composition of holograms. Schematic example shows a phase axicon and a ring aperture.

Fig. 7
Fig. 7

Phase of holograms for generating illumination beams. The hologram for Bessel (a) and Gaussian beam (b) and a static light-sheet (c) is shown in grayscale where a phase-shift of δϕ = 0 is indicated in white and δϕ = 2π in black.

Fig. 8
Fig. 8

Aperture low-pass filtering against axial intensity oscillations. Numerical simulations illustrate that additional rings (b) visible in the spectrum of the ring aperture (a) can be suppressed by low-pass filtering of the aperture (c). The result is shown in (d). The effect of a random pixel mask (e) is shown in (f).

Fig. 9
Fig. 9

Direct measurement of the lateral intensity profiles. The graph shows the sum of intensity xy-cross-sections at equally spaced z-positions for a Gaussian beam (a) and a Bessel-beam (b) propagating in homogenous space.

Fig. 10
Fig. 10

Images of two silica spheres (d = 8µm). a,b,c, Illumination by a static light sheet (a), a Gaussian beam (b) and a Bessel-beam (c), scanned in x-direction. The difference between z-linescans with widths of b = 16µm (indicated with dashed lines in (a,b,c)) and b = 60µm, Ib = 16µm(z)-Ib = 60µm(z), is shown in (d).

Fig. 11
Fig. 11

Imaging of a cluster of silica spheres. a,b, Pseudo-color images of a cluster of silica spheres (d = 2µm) illuminated by a scanned gaussian beam (a), a scanned Bessel beam (b). c, The normalized lateral standard deviation of the image intensity ŝx(z) as a function of propagation distance z. d, normalized lateral intensity profiles I(x,z = 10µm) [position is indicated by the dashed line in (a) and (b)].

Fig. 12
Fig. 12

Measuring the penetration depth of illumination beams in a cluster of silica spheres. a, b, Images of the fluorescence intensity Ihom(x, z) in a homogeneous medium for a single static Gaussian beam (a) and Bessel beam (b). c, d, Images of the fluorescence intensity Iinh(x, z) of beam’s propagation through a cluster of spheres. The pseudo-color image of the intensity of the single beam is overlayed with the grayscale image resulting from a scanned beam. e, Comparison of normalized axial intensity linescans Ihom(0, z) with width w = 10µm. d, Comparison of normalized axial intensity linescans for propagation through an inhomogeneous medium Iinh(0, z).

Fig. 13
Fig. 13

Images of a drosophila embryo. a-d, The maximum projection of a stack of images for illumination by a Gaussian (a, b) and Bessel beam (c, d). An area of 180µm x230µm is shown in (a) and (c) and the region marked with a size of 75µm x 75µm is shown in (b) and (d). e, An intensity profile in beam propagation direction is shown in e and indicated in (a) and (c) by a dashed line.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E ˜ ( k r ) = E ˜ 0 ( Θ ( k 0 N A k r ) Θ ( ε k 0 N A k r ) ) ,
I B e s s e l ( r ) = [ 2 ( 2 π ) 2 1 k 0 N A ( ε 1 ) 1 r ( J 1 ( k 0 N A r ) ε J 1 ( ε k 0 N A r ) ) ] 2 .
W ( r ) = 2 π 0 R I ( r ) r d r .
Δ k z = k 0 ( n 2 ε N A 2 n 2 N A 2 ) .
Δ z = q / Δ k z ,
E ( x , y ) = E i n ( x , y ) h ( x , y ) .
h ( x , y ) = t ( x , y ) e i δ ϕ ( x , y ) ,
I i d e a l ( k x , k y ) = | F T { h ( x , y ) E i n ( x , y ) } | 2 .
I t o t a l ( k x , k y ) = | F T { t p i x ( x , y ) h ( x , y ) E i n ( x , y ) } | 2 = | F T { t p i x ( x , y ) } F T { h ( x , y ) E i n ( x , y ) } | 2
I b g ( k x , k y ) = | F T { t p i x ( x , y ) } F T { h ( x , y ) e i ϕ b g ( x , y ) E i n ( x , y ) } | 2 .
δ ϕ ( x , y ) = k r r
t ( x , y ) = Θ ( r r o u t ) Θ ( r i n r )
d z = M 2 r out     r in t a n β
d r = M ( r out     r i n ) .
δ ϕ ( x , y ) = k 0 r 2 / 2 ρ
t ( x , y ) = Θ ( r r m a x )
δ ϕ ( x , y ) = k x 2 / 2 ρ
t ( x , y ) = Θ ( | x | w x / 2 ) Θ ( | y | w y / 2 ) .
E ˜ ( k x , k y ) = F T ( e i ϕ ( x , y ) t ( x , y ) ) = F T ( e i ϕ ( x , y ) ) * t ˜ ( k x , k y ) .
t L P ( x , y ) = t ( x , y ) e ( r / r L P ) 2
E ˜ ( k x , k y ) = F T ( e i ϕ ( x , y ) ) * ( t ˜ ( k x , k y ) e ( k r r L P / 2 ) 2 )
E ˜ ( k r ) = F T ( e i ϕ ( x , y ) ( θ ( r r max ) e ( r / r L P ) 2 ) ) F T ( e i ϕ ( x , y ) ) * ( J 1 ( k r r max ) k r r max e ( k r r L P / 2 ) 2 ) .
t r n d ( x , y ) = Θ ( r n d t ( x , y ) )
s ^ ( z ) = s ( z ) I ¯ ( z ) = 1 I ¯ ( z ) 1 d x ( I ¯ ( z ) I ( x , z ) ) 2 d x

Metrics