Abstract

The bending loss characteristics of the hybrid plasmonic waveguide are investigated theoretically and experimentally. Simulation results showed that the guided mode is confined mainly into outer high index slab as the bending radius decreases. Thus, the radiation loss due to bending is greatly suppressed. We fabricate flexible hybrid plasmonic waveguide consisted of 5 nm-thick Au stripe and flexible multiple polymer cladding layers. The measured bending loss is lower than 1 dB/180° at a wavelength of 1310 nm for the bending radii down to 2 mm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [CrossRef]
  5. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
    [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
    [CrossRef] [PubMed]
  7. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
    [CrossRef] [PubMed]
  8. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [CrossRef]
  9. S. Jetté-Charbonneau and P. Berini, “External cavity laser using a long-range surface plasmon grating as a distributed Bragg reflector,” Appl. Phys. Lett. 91(18), 181114 (2007).
    [CrossRef]
  10. S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
    [CrossRef]
  11. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
    [CrossRef] [PubMed]
  12. J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
    [CrossRef]
  13. W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M. H. Lee, and W. J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006).
    [CrossRef] [PubMed]
  14. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006).
    [CrossRef] [PubMed]
  15. S. Lee, S. Kim, and H. Lim, “Improved bending loss characteristics of asymmetric surface plasmonic waveguides for flexible optical wiring,” Opt. Express 17(22), 19435–19443 (2009).
    [CrossRef] [PubMed]
  16. J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
    [CrossRef] [PubMed]
  17. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
    [CrossRef] [PubMed]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  19. G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
    [CrossRef]
  20. R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
    [CrossRef]
  21. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
    [CrossRef]
  22. J. T. Kim, S. Park, and S. K. Park, “M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
    [CrossRef]
  23. I.-S. Jeong, H.-R. Park, S.-W. Lee, and M.-H. Lee, “Polymeric waveguides with Bragg gratings in the middle of the core layer,” J. Opt. Soc. Korea 13(2), 294–298 (2009).
    [CrossRef]
  24. P. Gadenne and G. Vuye, “In situ determination of the optical and electrical properties of thin films during their deposition,” J. Phys. E 10(7), 733–736 (1977).
    [CrossRef]

2010

2009

J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
[CrossRef] [PubMed]

S. Lee, S. Kim, and H. Lim, “Improved bending loss characteristics of asymmetric surface plasmonic waveguides for flexible optical wiring,” Opt. Express 17(22), 19435–19443 (2009).
[CrossRef] [PubMed]

I.-S. Jeong, H.-R. Park, S.-W. Lee, and M.-H. Lee, “Polymeric waveguides with Bragg gratings in the middle of the core layer,” J. Opt. Soc. Korea 13(2), 294–298 (2009).
[CrossRef]

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. T. Kim, S. Park, and S. K. Park, “M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

2008

2007

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

S. Jetté-Charbonneau and P. Berini, “External cavity laser using a long-range surface plasmon grating as a distributed Bragg reflector,” Appl. Phys. Lett. 91(18), 181114 (2007).
[CrossRef]

2006

2005

2004

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

1995

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

1994

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

1981

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

1977

P. Gadenne and G. Vuye, “In situ determination of the optical and electrical properties of thin films during their deposition,” J. Phys. E 10(7), 733–736 (1977).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Charbonneau, R.

Chaudhuri, S. K.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Choe, J.-S.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Gadenne, P.

P. Gadenne and G. Vuye, “In situ determination of the optical and electrical properties of thin films during their deposition,” J. Phys. E 10(7), 733–736 (1977).
[CrossRef]

Huang, W. P.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Jeong, I.-S.

Jetté-Charbonneau, S.

S. Jetté-Charbonneau and P. Berini, “External cavity laser using a long-range surface plasmon grating as a distributed Bragg reflector,” Appl. Phys. Lett. 91(18), 181114 (2007).
[CrossRef]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

Ju, J. J.

Jung, W. J.

Kim, J. T.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[CrossRef] [PubMed]

J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
[CrossRef] [PubMed]

J. T. Kim, S. Park, and S. K. Park, “M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Kim, M.

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

Kim, M. S.

Kim, M.-S.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Kim, S.

Kim, W.-K.

Kjaer, K.

Lahoud, N.

Larsen, M. S.

Lee, H.-M.

Lee, H.-Y.

Lee, J.-M.

J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

Lee, M. H.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M. H. Lee, and W. J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006).
[CrossRef] [PubMed]

Lee, M.-H.

Lee, S.

Lee, S.-W.

Lee, W.-J.

Leosson, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Lim, H.

Lu, J.

Mattiussi, G.

Mittra, R.

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

Nikolajsen, T.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

Park, H.-R.

Park, S.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. T. Kim, S. Park, and S. K. Park, “M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Park, S. K.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
[CrossRef] [PubMed]

J. T. Kim, S. Park, and S. K. Park, “M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

Park, S.-Y.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[CrossRef]

Pekel, U.

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Shin, J.-S.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[CrossRef]

Shin, S.-Y.

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[CrossRef] [PubMed]

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

Stern, M. S.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Vuye, G.

P. Gadenne and G. Vuye, “In situ determination of the optical and electrical properties of thin films during their deposition,” J. Phys. E 10(7), 733–736 (1977).
[CrossRef]

Xu, G. L.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Yang, W.-S.

Appl. Phys. Lett.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85(24), 5833–5835 (2004).
[CrossRef]

S. Jetté-Charbonneau and P. Berini, “External cavity laser using a long-range surface plasmon grating as a distributed Bragg reflector,” Appl. Phys. Lett. 91(18), 181114 (2007).
[CrossRef]

ETRI J.

J. T. Kim, S. Park, and S. K. Park, “M.- Kim, M.-H. Lee, and J. J. Ju, “Gold stripe optical waveguides fabricated by a novel double-layered liftoff process,” ETRI J. 31(6), 778–783 (2009).
[CrossRef]

IEE Proc., Optoelectron.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

IEEE Microw. Guid. Wave Lett.

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M. H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19(18), 1374–1376 (2007).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, S. K. Park, M. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett. 21(13), 902–904 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Korea

J. Phys. E

P. Gadenne and G. Vuye, “In situ determination of the optical and electrical properties of thin films during their deposition,” J. Phys. E 10(7), 733–736 (1977).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

S.-Y. Park, J. T. Kim, J.-S. Shin, and S.-Y. Shin, “Hybrid vertical directional coupling between a long range surface plasmon polariton waveguide and a dielectric waveguide,” Opt. Commun. 282(23), 4513–4517 (2009).
[CrossRef]

Opt. Express

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005).
[CrossRef] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[CrossRef] [PubMed]

P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006).
[CrossRef] [PubMed]

W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M. H. Lee, and W. J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16(17), 13133–13138 (2008).
[CrossRef] [PubMed]

J.-M. Lee, S. Park, M. S. Kim, S. K. Park, J. T. Kim, J.-S. Choe, W.-J. Lee, M.-H. Lee, and J. J. Ju, “Low bending loss metal waveguide embedded in a free-standing multilayered polymer film,” Opt. Express 17(1), 228–234 (2009).
[CrossRef] [PubMed]

S. Lee, S. Kim, and H. Lim, “Improved bending loss characteristics of asymmetric surface plasmonic waveguides for flexible optical wiring,” Opt. Express 17(22), 19435–19443 (2009).
[CrossRef] [PubMed]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S.-Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18(3), 2808–2813 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Phys. Rev. Lett.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Other

A. D. Boardman, ed., Electromagnetic Surface Modes (Wiley, 1982).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Architectural view of curved hybrid plasmonic waveguide bend. (a) perspective view and (b) cross-sectional view.

Fig. 2
Fig. 2

Er field contour plots and Er field distributions along z = 0 line in the curved hybrid plasmonic waveguides of various radii: (a) & (d) R = 100 mm, (b) & (e) R = 10 mm, and (c) & (f) R = 5 mm. h = 2 μm, d = 5 μm, w = 3.5 μm, t = 5 nm in all cases.

Fig. 3
Fig. 3

Calculated propagation characteristics of the curved hybrid plasmonic waveguide. (a) Effective refractive index, (b) bending loss per unit length, (c) coupling loss between the straight and the curved waveguides, and (d) total additional bending loss per 180° as functions of a bending radius. h = 2 μm, d = 5 μm, t = 5 nm in all cases.

Fig. 4
Fig. 4

Comparison between the proposed hybrid plasmonic waveguide (h = 2 μm) and the waveguide reported in [16] (h = 0). (a) Waveguide structure reported in [16], where n 1 = 1.514 and n 2 = 1.524, (b) bending loss per unit length, (c) total additional bending loss per 180° as functions of a bending radius, and (d) total loss of a 180° bending including propagation loss. Mode profiles of the waveguide depicted in (a) for (e) R = 100 mm, (f) R = 5 mm, and (g) R = 2 mm. The dimensions of the metal stripe is the same; w = 3.5 μm, t = 5 nm.

Fig. 5
Fig. 5

Measured additional bending and insertion loss of the flexible hybrid plasmonic waveguide and a standard single mode fiber.

Metrics