Abstract

We present experimental evidence of the generation of few-cycle propagating surface plasmon polariton wavepackets. These ultrashort plasmonic pulses comprised of only 2-3 field oscillations were characterized by an autocorrelation measurement based on electron photoemission. By exploiting plasmonic field enhancement, we achieved plasmon-induced tunnelling emission from the metal surface at low laser intensity, opening perspectives for strong-field experiments with low pulse energies. All-optical electron acceleration up to keV kinetic energy is also demonstrated in these surface-confined, few-cycle fields with only 1.35 × 1012 W/cm2 focused laser intensity. The experimental results are found to be in excellent agreement with the model.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz and M. Yu. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81, 163–234 (2009).
    [CrossRef]
  2. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
    [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  4. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
    [CrossRef]
  5. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 93120 (2006).
    [CrossRef]
  6. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
    [CrossRef] [PubMed]
  7. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [CrossRef]
  8. S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  9. J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
    [CrossRef]
  10. J. Kupersztych, P. Monchicourt, and M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86(22), 5180–5183 (2001).
    [CrossRef] [PubMed]
  11. S. E. Irvine, A. Dechant, and A. Y. Elezzabi, “Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons,” Phys. Rev. Lett. 93(18), 184801 (2004).
    [CrossRef] [PubMed]
  12. M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nature Photon. 1, 539–544 (2007).
    [CrossRef]
  13. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
    [CrossRef] [PubMed]
  14. P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97(24), 247402 (2006).
    [CrossRef]
  15. A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jets,” Opt. Lett. 30(8), 884–886 (2005).
    [CrossRef] [PubMed]
  16. A. W. Dweydari and C. H. B. Mee, “Work function measurements on (100) and (110) surfaces of silver,” Phys. Status Solidi 27, 223 (1975) (a).
    [CrossRef]
  17. H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 4, 239–310 (1997).
    [CrossRef]
  18. S. E. Irvine and A. Y. Elezzabi, “Surface-plasmon-based electron acceleration,” Phys. Rev. A 73, 013815 (2006).
    [CrossRef]
  19. N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
    [CrossRef]
  20. Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
    [CrossRef] [PubMed]
  21. B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Particle-plasmon decay-time determination by measuring the optical near field’s autocorrelation: influence of inhomogeneous line broadening,” Appl. Phys. B 69, 223–227 (1999).
    [CrossRef]
  22. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).
  23. H. Raether, Surface plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
  24. G. Farkas and C. Tóth, “Energy spectrum of photoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41(7), 4123–4126 (1990).
    [CrossRef] [PubMed]
  25. P. Dombi and P. Rácz, “Ultrafast monoenergetic electron source by optical waveform control of surface plasmons,” Opt. Express 16(5), 2887–2893 (2008).
    [CrossRef] [PubMed]

2009 (3)

F. Krausz and M. Yu. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

2008 (2)

P. Dombi and P. Rácz, “Ultrafast monoenergetic electron source by optical waveform control of surface plasmons,” Opt. Express 16(5), 2887–2893 (2008).
[CrossRef] [PubMed]

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

2007 (2)

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nature Photon. 1, 539–544 (2007).
[CrossRef]

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

2006 (4)

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97(24), 247402 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. E. Irvine and A. Y. Elezzabi, “Surface-plasmon-based electron acceleration,” Phys. Rev. A 73, 013815 (2006).
[CrossRef]

2005 (3)

A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jets,” Opt. Lett. 30(8), 884–886 (2005).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

2004 (1)

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, “Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons,” Phys. Rev. Lett. 93(18), 184801 (2004).
[CrossRef] [PubMed]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

2001 (2)

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

J. Kupersztych, P. Monchicourt, and M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86(22), 5180–5183 (2001).
[CrossRef] [PubMed]

1999 (1)

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Particle-plasmon decay-time determination by measuring the optical near field’s autocorrelation: influence of inhomogeneous line broadening,” Appl. Phys. B 69, 223–227 (1999).
[CrossRef]

1997 (1)

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 4, 239–310 (1997).
[CrossRef]

1991 (1)

N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
[CrossRef]

1990 (1)

G. Farkas and C. Tóth, “Energy spectrum of photoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41(7), 4123–4126 (1990).
[CrossRef] [PubMed]

1975 (1)

A. W. Dweydari and C. H. B. Mee, “Work function measurements on (100) and (110) surfaces of silver,” Phys. Status Solidi 27, 223 (1975) (a).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).

Alù, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Particle-plasmon decay-time determination by measuring the optical near field’s autocorrelation: influence of inhomogeneous line broadening,” Appl. Phys. B 69, 223–227 (1999).
[CrossRef]

Bouhelier, A.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

Carey, J. J.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

Dechant, A.

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, “Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons,” Phys. Rev. Lett. 93(18), 184801 (2004).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Dombi, P.

Dweydari, A. W.

A. W. Dweydari and C. H. B. Mee, “Work function measurements on (100) and (110) surfaces of silver,” Phys. Status Solidi 27, 223 (1975) (a).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Elezzabi, A. Y.

S. E. Irvine and A. Y. Elezzabi, “Surface-plasmon-based electron acceleration,” Phys. Rev. A 73, 013815 (2006).
[CrossRef]

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, “Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons,” Phys. Rev. Lett. 93(18), 184801 (2004).
[CrossRef] [PubMed]

Elsaesser, T.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

Farkas, G.

G. Farkas and C. Tóth, “Energy spectrum of photoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41(7), 4123–4126 (1990).
[CrossRef] [PubMed]

Fave, C.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

Félidj, N.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

Grand, J.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Hohenau, A.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

Hommelhoff, P.

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97(24), 247402 (2006).
[CrossRef]

Irvine, S. E.

S. E. Irvine and A. Y. Elezzabi, “Surface-plasmon-based electron acceleration,” Phys. Rev. A 73, 013815 (2006).
[CrossRef]

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, “Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons,” Phys. Rev. Lett. 93(18), 184801 (2004).
[CrossRef] [PubMed]

Ivanov, M. Yu.

F. Krausz and M. Yu. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Jaroszynski, D. A.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Jin, J. H.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Jung, Y. S.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Kasevich, M. A.

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97(24), 247402 (2006).
[CrossRef]

Kealhofer, C.

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97(24), 247402 (2006).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).

Kim, H. K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Kim, S.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kleineberg, U.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nature Photon. 1, 539–544 (2007).
[CrossRef]

Kling, M. F.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nature Photon. 1, 539–544 (2007).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Krausz, F.

F. Krausz and M. Yu. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nature Photon. 1, 539–544 (2007).
[CrossRef]

Krenn, J. R.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Particle-plasmon decay-time determination by measuring the optical near field’s autocorrelation: influence of inhomogeneous line broadening,” Appl. Phys. B 69, 223–227 (1999).
[CrossRef]

Krieger, W.

N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
[CrossRef]

Kroo, N.

N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
[CrossRef]

Kubo, A.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Kupersztych, J.

J. Kupersztych, P. Monchicourt, and M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86(22), 5180–5183 (2001).
[CrossRef] [PubMed]

Lacroix, J. C.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Particle-plasmon decay-time determination by measuring the optical near field’s autocorrelation: influence of inhomogeneous line broadening,” Appl. Phys. B 69, 223–227 (1999).
[CrossRef]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Particle-plasmon decay-time determination by measuring the optical near field’s autocorrelation: influence of inhomogeneous line broadening,” Appl. Phys. B 69, 223–227 (1999).
[CrossRef]

Leroux, Y.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Mee, C. H. B.

A. W. Dweydari and C. H. B. Mee, “Work function measurements on (100) and (110) surfaces of silver,” Phys. Status Solidi 27, 223 (1975) (a).
[CrossRef]

Monchicourt, P.

J. Kupersztych, P. Monchicourt, and M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86(22), 5180–5183 (2001).
[CrossRef] [PubMed]

Ogawa, S.

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 4, 239–310 (1997).
[CrossRef]

Onda, K.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Park, I. Y.

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Petek, H.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 4, 239–310 (1997).
[CrossRef]

Rácz, P.

Raynaud, M.

J. Kupersztych, P. Monchicourt, and M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86(22), 5180–5183 (2001).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Salandrino, A.

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Schulz, C. P.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Solli, D. R.

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

Stockhausen, V.

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nature Photon. 1, 539–544 (2007).
[CrossRef]

Sun, Z.

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Thost, J.-P.

N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
[CrossRef]

Tóth, C.

G. Farkas and C. Tóth, “Energy spectrum of photoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41(7), 4123–4126 (1990).
[CrossRef] [PubMed]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Völcker, M.

N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Walther, H.

N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
[CrossRef]

Wiederrecht, G. P.

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Wynne, K.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Zawadzka, J.

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Appl. Phys. B (1)

B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Particle-plasmon decay-time determination by measuring the optical near field’s autocorrelation: influence of inhomogeneous line broadening,” Appl. Phys. B 69, 223–227 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001).
[CrossRef]

Europhys. Lett. (1)

N. Kroo, J.-P. Thost, M. Völcker, W. Krieger, and H. Walther, “Decay length of surface-plasmons determined with a tunneling microscope,” Europhys. Lett. 15, 289 (1991).
[CrossRef]

Nano Lett. (2)

Y. Leroux, J. C. Lacroix, C. Fave, V. Stockhausen, N. Félidj, J. Grand, A. Hohenau, and J. R. Krenn, “Active plasmonic devices with anisotropic optical response: a step toward active polarizer,” Nano Lett. 9(5), 2144–2148 (2009) (and references therein).
[CrossRef] [PubMed]

A. Kubo, K. Onda, H. Petek, Z. Sun, Y. S. Jung, and H. K. Kim, “Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film,” Nano Lett. 5(6), 1123–1127 (2005).
[CrossRef] [PubMed]

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

S. Kim, J. H. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Nature Photon. (1)

M. I. Stockman, M. F. Kling, U. Kleineberg, and F. Krausz, “Attosecond nanoplasmonic-field microscope,” Nature Photon. 1, 539–544 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

S. E. Irvine and A. Y. Elezzabi, “Surface-plasmon-based electron acceleration,” Phys. Rev. A 73, 013815 (2006).
[CrossRef]

G. Farkas and C. Tóth, “Energy spectrum of photoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41(7), 4123–4126 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, “Localized multiphoton emission of femtosecond electron pulses from metal nanotips,” Phys. Rev. Lett. 98(4), 043907 (2007).
[CrossRef] [PubMed]

P. Hommelhoff, C. Kealhofer, and M. A. Kasevich, “Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses,” Phys. Rev. Lett. 97(24), 247402 (2006).
[CrossRef]

J. Kupersztych, P. Monchicourt, and M. Raynaud, “Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission,” Phys. Rev. Lett. 86(22), 5180–5183 (2001).
[CrossRef] [PubMed]

S. E. Irvine, A. Dechant, and A. Y. Elezzabi, “Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons,” Phys. Rev. Lett. 93(18), 184801 (2004).
[CrossRef] [PubMed]

N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005).
[CrossRef] [PubMed]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Phys. Status Solidi (1)

A. W. Dweydari and C. H. B. Mee, “Work function measurements on (100) and (110) surfaces of silver,” Phys. Status Solidi 27, 223 (1975) (a).
[CrossRef]

Prog. Surf. Sci. (1)

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 4, 239–310 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

F. Krausz and M. Yu. Ivanov, “Attosecond Physics,” Rev. Mod. Phys. 81, 163–234 (2009).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).

Other (1)

H. Raether, Surface plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental scheme with pulse parameters and characterization results of a 5-fs, 5-nJ pulse (spectrum and second order autocorrelation are shown in the insets). SHG: second harmonic generation-based autocorrelation, BBO: β-BaB2O4 crystal, EMT: electron multiplier tube (Hamamatsu R595), HV: high voltage, V: retarding grid voltage feedthrough. Pulse propagation in the prism material was pre-compensated for by introducing broadband chirped mirrors and finely tuneable dispersive elements (a pair of thin glass wedges) into the beam.

Fig. 2
Fig. 2

(a) Measured interferometric time-resolved signal of SPP enhanced photoemission induced by few-cycle pulses. The reconstructed blue curve in (b) is calculated using the simulation of SPP coupling on the actual, sputtered metal film with 5-fs exciting laser pulses (see text for details and also the inset of (b) for the illustration of a part of the modelling geometry with the prism material in blue and the sputtered silver film in green). The red curve in (b) is the calculated fourth order autocorrelation function of the SPP exciting 5-fs laser pulse, plotted for reference. The inset of (a) illustrates the fourth order dependence of the total SPP-induced free-space photocurrent on a double logarithmic scale. The slope of the fit is n = 4.05 ± 0.11. The curves in (c) are typical computed few-cycle SPP waveforms at different locations on the Ag surface exhibiting 2.8 nm rms roughness.

Fig. 3
Fig. 3

(a) Few-cycle SPP accelerated electron spectra at different intensities. The spectrum corresponding to the highest 1.35×1012 W/cm2 focused intensity is depicted in (b) (red circles) together with the corresponding simulation result (blue solid line, see text). (c) shows the total electron yield as a function of intensity on a log-log scale. The decrease of the slope from a value of 4.3 to 0.89 corresponds to the transition between multi-photon and tunneling emission.

Metrics