Abstract

This paper presents a spectrally-resolved integration system suitable for the reading of Bragg grating, all-fiber Fabry-Perot, and similar spectrally-resolved fiber-optic sensors. This system is based on a standard telecommunication dense wavelength division multiplexing transmission module that contains a distributed feedback laser diode and a wavelength locker. Besides the transmission module, only a few additional opto-electronic components were needed to build an experimental interrogation system that demonstrated over a 2 nm wide wavelength interrogation range, and a 1 pm wavelength resolution. When the system was combined with a typical Bragg grating sensor, a strain resolution of 1 με and temperature resolution of 0.1 °C were demonstrated experimentally. The proposed interrogation system relies entirely on Telecordia standard compliant photonic components and can thus be straightforwardly qualified for use within the range of demanding applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
    [CrossRef]
  2. Y. J. Rao, Z. L. Ran, and R. R. Chen, “Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration,” Opt. Lett. 31(18), 2684–2686 (2006).
    [CrossRef] [PubMed]
  3. P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
    [CrossRef]
  4. J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
    [CrossRef]
  5. J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
    [CrossRef]
  6. D. Tosi, M. Olivero, and G. Perrone, “Low-cost fiber Bragg grating vibroacoustic sensor for voice and heartbeat detection,” Appl. Opt. 47(28), 5123–5129 (2008).
    [CrossRef] [PubMed]
  7. T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
    [CrossRef]
  8. E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
    [CrossRef] [PubMed]
  9. C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
    [CrossRef]

2010 (2)

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

E. Cibula and D. Donlagic, “Low-loss semi-reflective in-fiber mirrors,” Opt. Express 18(11), 12017–12026 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

2008 (2)

D. Tosi, M. Olivero, and G. Perrone, “Low-cost fiber Bragg grating vibroacoustic sensor for voice and heartbeat detection,” Appl. Opt. 47(28), 5123–5129 (2008).
[CrossRef] [PubMed]

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

2006 (1)

2004 (1)

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[CrossRef]

1988 (1)

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

Ban, D.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

Chang, J.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Chen, R. R.

Cibula, E.

Donlagic, D.

Huo, D

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Huo, D.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Huo, D. H.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

Jin, Z.

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[CrossRef]

Lee, C. E.

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

Liu, T.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Liu, T. Y.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

Liu, X.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Liu, X. H.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

Ma, L.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Ning, Y

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Olivero, M.

Perrone, G.

Rahimi, S.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Shang, Y

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Song, M.

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[CrossRef]

Sun, F.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

Taylor, H. F.

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

Tosi, D.

Tsai, P.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

Wang, C.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Wang, J. Y.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

Wang, Q.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Wang, Z

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Wei, Y.

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Xiao, G.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

Zhang, X.

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Zhang, Z.

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

Zhao, Y

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

C. E. Lee and H. F. Taylor, “Interferometric Optical Fibre Sensors Using Internal Mirrors,” Electron. Lett. 24(4), 193–194 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Jin and M. Song, “Fiber Grating Sensor Array Interrogation With Time-Delayed Sampling of a Wavelength-Scanned Fiber Laser,” IEEE Photon. Technol. Lett. 16(8), 1924–1926 (2004).
[CrossRef]

P. Tsai, F. Sun, G. Xiao, Z. Zhang, S. Rahimi, and D. Ban, “A New Fiber-Bragg-Grating Sensor Interrogation System Deploying Free-Spectral-Range-Matching Scheme With High Precision and Fast Detection Rate,” IEEE Photon. Technol. Lett. 20(4), 300–302 (2008).
[CrossRef]

J. Phys.: Conf. Ser. (1)

T. Liu, C. Wang, Y. Wei, Y Zhao, D Huo, Y Shang, Z Wang, and Y Ning, “Fibre optic sensors for mine hazard detection,” J. Phys.: Conf. Ser. 178, 012004 (2009).
[CrossRef]

Laser Phys. (1)

J. Chang, Q. Wang, X. Zhang, D. Huo, L. Ma, X. Liu, T. Liu, and C. Wang, “A Fiber Bragg Grating Acceleration Sensor Interrogated by a DFB Laser Diode,” Laser Phys. 19(1), 134–137 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21(9), 09412 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sensor interogation system (TEC-thermo-electric cooler, NTC- negative temperature coefficient thermistor, TIA- transimpedance amplifier, PCG-programmable current generator)

Fig. 2
Fig. 2

Typical measured response of LC25-EW module wavelength locker detectors to laser wavelength variation

Fig. 3
Fig. 3

Measured and interpolated wavelength locker function W(λ) obtained during the calibration process for typical Oclaro LC25-EW DWDM module

Fig. 4
Fig. 4

Example of FBG sensor’s reflectivity versus wavelength obtained by the current sweep and processing of raw data recorded by all four detectors

Fig. 5
Fig. 5

Demonstration of FBG temperature sensor interrogation; the temperature was increased and reduced back to the initial temperature for 0.1, 0.2, 0.5, and 1.1°C

Fig. 6
Fig. 6

Change of peak wavelength when FBG was cyclically strained for 1 με (output filter corner frequency was set at 1 Hz).

Fig. 7
Fig. 7

Dynamic performance of proposed integration system: A steel plate containing interrogated FBG and reference electrical strain gauge was exposed to nearly harmonic excitation bursts (the excitation signal within burst had frequency of 1 Hz and 5 Hz).

Fig. 8
Fig. 8

Peak wavelength during high temperature changes on AFFP

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

w 0 ( λ 0 ) = I d e t 3 ( λ 0 ) I d e t 4 ( λ 0 ) I d e t 3 ( λ 0 ) + I d e t 4 ( λ 0 )
w 0 = W ( λ 0 )

Metrics