Abstract

We investigate the Raman gain spectra produced from pulse-pumping a highly nonlinear fiber with shaped optical pulses delivered from a Yb-doped fiber MOPA pump source. Cascaded Raman wavelength shifting up to seven Stokes orders is demonstrated and the counter-propagating gain is measured across all seven Stokes orders. Step-shaped optical pulses with varying instantaneous powers are then used to pump the highly nonlinear fiber, generating a controllable gain spectrum across multiple Stokes orders. Furthermore, we extend this work by using multiple pump wavelengths along with step-shaped pulses to increase the bandwidth of the Raman gain spectrum.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14(11), 855–859 (1978).
    [CrossRef]
  2. S. B. Papernyi, V. B. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference (OFC), (6–11 March 2005, Anaheim, CA, USA, 2005), paper OThF4.
  3. P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33(15), 1690–1692 (2008).
    [CrossRef] [PubMed]
  4. E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
    [CrossRef]
  5. L. F. Mollenauer, A. R. Grant, and P. V. Mamyshev, “Time-division multiplexing of pump wavelengths to achieve ultrabroadband, flat, backward-pumped Raman gain,” Opt. Lett. 27(8), 592–594 (2002).
    [CrossRef]
  6. P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).
  7. C. R. S. Fludger, V. Handerek, N. Jolley, and R. J. Mears, “Novel ultra-broadband high performance distributed Raman amplifier employing pump modulation,” Optical Fiber Communications Conference, (Anaheim, CA, USA, 2002), paper WB4.
  8. J.-C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photon. Technol. Lett. 15(2), 212–214 (2003).
    [CrossRef]
  9. C. Farrell, C. Codemard, and J. Nilsson, “A counter-propagating cascaded Raman fiber amplifier pulsed pumped with a 1.06 µm source,” in Frontier in Optics, (16–20 Sept 2007, San Jose, CA, 2007), paper FWB2.
  10. C. Farrell, C. Codemard, and J. Nilsson, “A Raman fibre amplifier generating simultaneous gain across multiple Stokes orders by using step shaped optical pulses,” in 3rd EPS-QEOD Europhoton Conference, (31 Aug - 05 Sep 2008, Paris, France, 2008), paper THoC5.
  11. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22(1), 79–93 (2004).
    [CrossRef]
  12. P. J. Winzer, J. Bromage, R. T. Kane, P. A. Sammer, and C. Headley, “Repetition rate requirements for time-division multiplexed Raman pumping,” J. Lightwave Technol. 22(2), 401–408 (2004).
    [CrossRef]
  13. Information available at http://www.vpiphotonics.com/ .
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press Inc, San Diego CA, 2001).
  15. Q. Lin and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B 20(8), 1616–1631 (2003).
    [CrossRef]

2008 (1)

2006 (1)

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

2004 (2)

2003 (2)

Q. Lin and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B 20(8), 1616–1631 (2003).
[CrossRef]

J.-C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photon. Technol. Lett. 15(2), 212–214 (2003).
[CrossRef]

2002 (1)

2000 (1)

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[CrossRef]

1978 (1)

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14(11), 855–859 (1978).
[CrossRef]

Agrawal, G. P.

Bouteiller, J.-C.

J.-C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photon. Technol. Lett. 15(2), 212–214 (2003).
[CrossRef]

Brar, K.

J.-C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photon. Technol. Lett. 15(2), 212–214 (2003).
[CrossRef]

Bromage, J.

Codemard, C.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Cohen, L. G.

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14(11), 855–859 (1978).
[CrossRef]

Dianov, E. M.

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[CrossRef]

Dupriez, P.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Farrell, C.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Fink, Y.

Grant, A. R.

Headley, C.

P. J. Winzer, J. Bromage, R. T. Kane, P. A. Sammer, and C. Headley, “Repetition rate requirements for time-division multiplexed Raman pumping,” J. Lightwave Technol. 22(2), 401–408 (2004).
[CrossRef]

J.-C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photon. Technol. Lett. 15(2), 212–214 (2003).
[CrossRef]

Ibsen, M.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Jeong, Y.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Kane, R. T.

Kim, J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Lin, C.

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14(11), 855–859 (1978).
[CrossRef]

Lin, Q.

Mamyshev, P. V.

Mollenauer, L. F.

Nilsson, J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Prokhorov, A. M.

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[CrossRef]

Radic, S.

J.-C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photon. Technol. Lett. 15(2), 212–214 (2003).
[CrossRef]

Rakich, P. T.

Richardson, D. J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Sahu, J. K.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Sammer, P. A.

Soljacic, M.

Winzer, P. J.

IEEE J. Quantum Electron. (1)

L. G. Cohen and C. Lin, “A universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser,” IEEE J. Quantum Electron. 14(11), 855–859 (1978).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1022–1028 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-C. Bouteiller, K. Brar, J. Bromage, S. Radic, and C. Headley, “Dual-order Raman pump,” IEEE Photon. Technol. Lett. 15(2), 212–214 (2003).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Proc. SPIE (1)

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system,” Proc. SPIE 6102, 348–352 (2006).

Other (6)

C. R. S. Fludger, V. Handerek, N. Jolley, and R. J. Mears, “Novel ultra-broadband high performance distributed Raman amplifier employing pump modulation,” Optical Fiber Communications Conference, (Anaheim, CA, USA, 2002), paper WB4.

C. Farrell, C. Codemard, and J. Nilsson, “A counter-propagating cascaded Raman fiber amplifier pulsed pumped with a 1.06 µm source,” in Frontier in Optics, (16–20 Sept 2007, San Jose, CA, 2007), paper FWB2.

C. Farrell, C. Codemard, and J. Nilsson, “A Raman fibre amplifier generating simultaneous gain across multiple Stokes orders by using step shaped optical pulses,” in 3rd EPS-QEOD Europhoton Conference, (31 Aug - 05 Sep 2008, Paris, France, 2008), paper THoC5.

S. B. Papernyi, V. B. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference (OFC), (6–11 March 2005, Anaheim, CA, USA, 2005), paper OThF4.

Information available at http://www.vpiphotonics.com/ .

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press Inc, San Diego CA, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the dual wavelength MOPA pump source. AWG: Arbitrary waveform generator; CP: Cladding pumped; YDFA: Ytterbium-doped fiber amplifier; HR: High reflectivity; HT: High transmission.

Fig. 2
Fig. 2

(a) Raman gain efficiency spectrum measured at 1064 nm for the HNLF. (b) Measured attenuation and chromatic dispersion profiles for the HNLF.

Fig. 3
Fig. 3

(a) Counter-propagating on-off gain and (b) counter-propagating net gain over seven Stokes orders for the 2 km HNLF: (‒●‒) corresponds to a 20% duty cycle; (‒▲‒) corresponds to a 40% duty cycle. (c) Simulated data for the counter-propagating on-off gain over seven Stokes orders for the 2 km HNLF: (‒♦‒) corresponds to a 20% duty cycle; (‒x‒) corresponds to a 40% duty cycle. (d) A simulated gain spectrum for a pump power of 0.8 W, where the maximum gain is located at the 1st Stokes order. 1st Stokes (▬) = 1116 nm, 2nd Stokes (▬) = 1172.4 nm, 3rd Stokes (▬) = 1235.6 nm, 4th Stokes (▬) = 1305.8 nm, 5th Stokes (▬) = 1384.8 nm, 6th Stokes (▬) = 1473.6 nm, 7th Stokes (▬) = 1573.6 nm.

Fig. 4
Fig. 4

Dual-level pulse-pumping of the 2 km HNLF. (a) Initial pump pulse with 50% total duty cycle. (b) Resulting counter-propagating Raman gain spectra; Curve A: 502 mW of average pump power, Curve B: 797 mW of average pump power. (c) Temporal profile of transmitted pump at 1064 nm after propagating through the 2 km HNLF for curve A. (d) Temporal profile of co-propagating 1st-Stokes power, as Raman-scattered from the pump pulse shown in (a) (corresponding to curve A). (e) Same as (d) but for the 2nd-Stokes power.

Fig. 5
Fig. 5

(a) Quasi-rectangular pump pulses with 25% duty cycle and (b) Counter-propagating on-off gain versus average pump power for the 1st and 2nd Stokes orders.

Fig. 6
Fig. 6

Spectral integral of gain over region with positive Raman gain versus instantaneous pump power for CW pumped cascaded SRS.

Fig. 7
Fig. 7

Multi-level pulse-pumping of the 2 km HNLF. (a) Initial pump pulse with 47% total duty cycle. (b) Resulting counter-propagating Raman gain spectra. (c) Section of pump pulse transferred to the 1st Stokes order. (d) Section of pump pulse transferred to the 2nd Stokes order. (e) Section of pump pulse transferred to the 3rd Stokes order.

Fig. 8
Fig. 8

Simulated results for two examples of multi-level pump pulses (a), (c) designed for equal Raman gain at three Stokes orders and corresponding (b), (d) total gain spectra. Individual gain spectra from each section of the pump pulses are also shown.

Fig. 9
Fig. 9

Dual-level pulse-pumping of the 2 km HNLF with two pump wavelengths at 1064 nm and 1090 nm; (a) initial pump pulse with 75% total duty cycle; (b) resulting counter-propagating Raman gain spectrum; (c) depleted pump pulses after propagating through the 2 km HNLF; (d) section of pump pulses transferred to the 1st Stokes order; (e) section of pump pulses transferred to the 2nd Stokes order.

Fig. 10
Fig. 10

Counter-propagating Raman gain spectra (a) resulting from simulations of dual-level pulse-pumping of the 2 km HNLF with two pump wavelengths. The black curve shows a flattened gain spectrum using the pump pulse profiles in (b) and pump wavelengths of 1064 and 1090 nm. The red curve shows a flattened gain spectrum using pump wavelengths of 1064 and 1087 nm.

Fig. 11
Fig. 11

Counter-propagating Raman gain spectra (a) resulting from simulations of multi-level pulse-pumping of the 2 km HNLF with three pump wavelengths. Black curve: Flattened gain spectrum across the 1st, 2nd and 3rd Stokes orders using pump pulse profiles shown in (b); Red curve: Flattened gain spectrum across the 5th, 6th and 7th Stokes orders; Blue curve: Flattened gain spectrum across seven Stokes orders (1st to 7th).

Metrics