Abstract

Without cavity dumping or external amplification, we report a femtosecond Cr:forsterite laser with a 1.4W output power and 2W in continuous wave (CW) operated with a crystal temperature of 267K. In the femtosecond regime, the oscillator generates Kerr-lens-mode-locked 84fs pulses with a repetition rate of 85MHz, corresponding to a high 16.5nJ pulse energy directly from a single Cr:forsterite resonator. This intense femtosecond Cr:forsterite laser is ideal to pump varieties of high power fiber light sources and could be thus ideal for many biological and spectroscopy applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Carrig and C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16(21), 1662–1664 (1991).
    [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
    [CrossRef] [PubMed]
  3. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21(17), 1408–1410 (1996).
    [CrossRef] [PubMed]
  4. C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
    [CrossRef] [PubMed]
  5. C.-S. Hsieh, S.-U. Chen, Y.-W. Lee, Y.-S. Yang, and C.-K. Sun, “Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,” Opt. Express 16(15), 11574–11588 (2008).
    [PubMed]
  6. I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
    [CrossRef]
  7. S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
    [CrossRef]
  8. S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26(23), 1909–1911 (2001).
    [CrossRef]
  9. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
    [CrossRef] [PubMed]
  10. T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett. 31(7), 930–932 (2006).
    [CrossRef] [PubMed]
  11. S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
    [CrossRef]
  12. J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
    [CrossRef] [PubMed]
  13. C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003).
    [CrossRef] [PubMed]
  14. S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14(13), 6178–6187 (2006).
    [CrossRef] [PubMed]
  15. S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
    [CrossRef]
  16. C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, and C.-K. Sun, “Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye,” Opt. Lett. 33(4), 387–389 (2008).
    [CrossRef] [PubMed]
  17. S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
    [CrossRef] [PubMed]
  18. W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010).
    [CrossRef] [PubMed]
  19. S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
    [CrossRef] [PubMed]
  20. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
    [CrossRef] [PubMed]
  21. R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
    [CrossRef] [PubMed]
  22. K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
    [CrossRef]
  23. T. Dennis, E. A. Curtis, C. W. Oates, L. Hollberg, and S. L. Gilbert, “Wavelength References for 1300-nm Wavelength-Division Multiplexing,” J. Lightwave Technol. 20(5), 776–782 (2002).
    [CrossRef]
  24. M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
    [CrossRef] [PubMed]
  25. M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
    [CrossRef] [PubMed]
  26. A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).
  27. A. B. Fedotov, D. A. Sidorov-Biryukov, A. A. Ivanov, M. V. Alfimov, V. I. Beloglazov, N. B. Skibina, C.-K. Sun, and A. M. Zheltikov, “Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses,” J. Opt. Soc. Am. B 23(7), 1471–1477 (2006).
    [CrossRef]
  28. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
    [CrossRef]
  29. M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
    [CrossRef]
  30. V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
    [CrossRef]
  31. T. J. Carrig and C. R. Pollock, “Performance of a Continuous-Wave Forsterite Laser with Krypton Ion, Ti:Sapphire and Nd:YAG Pump Lasers,” IEEE J. Quantum Electron. 29(11), 2835–2844 (1993).
    [CrossRef]
  32. N. Zhavoronkov, A. Avtukh, and V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36(33), 8601–8605 (1997).
    [CrossRef]
  33. V. Yanovsky, Y. Pang, F. Wise, and B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18(18), 1541–1543 (1993).
    [CrossRef] [PubMed]
  34. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 mum,” Opt. Lett. 26(5), 292–294 (2001).
    [CrossRef]
  35. A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995).
    [CrossRef]
  36. A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18(11), 1578–1586 (2001).
    [CrossRef]
  37. N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, and V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23(13), 1028–1030 (1998).
    [CrossRef]
  38. E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, and K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21(5), 354–356 (1996).
    [CrossRef] [PubMed]
  39. G. Jonusauskas, J. G. Oberlé, and C. Rullière, “54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite,” Opt. Lett. 23(24), 1918–1920 (1998).
    [CrossRef]
  40. V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr(4+):Mg(2)SiO(4) oscillator operating at a low repetition rate,” Opt. Lett. 26(24), 1999–2001 (2001).
    [CrossRef]
  41. H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “80-nJ Multipass-Cavity Chirped-Pulse Cr4+:forsterite Laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWE3.
  42. Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt. Lett. 18(14), 1168–1170 (1993).
    [CrossRef] [PubMed]
  43. T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Intracavity frequency-doubled femtosecond cr(4+):forsterite laser,” Appl. Opt. 40(12), 1957–1960 (2001).
    [CrossRef]
  44. T.-M. Liu, S.-P. Tai, H.-H. Chang, and C.-K. Sun, “Simultaneous multiwavelength generation from a mode-locked all-solid-state Cr:forsterite laser,” Opt. Lett. 26(11), 834–836 (2001).
    [CrossRef]
  45. T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002).
    [CrossRef]
  46. Prime Optical Fiber Corp, “Product information of single-mode optical fiber,” http://www.pofc.com/files/file/financial/SMF130V_4.pdf .
  47. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
    [CrossRef] [PubMed]

2010

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[CrossRef]

W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010).
[CrossRef] [PubMed]

G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
[CrossRef] [PubMed]

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

2009

S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef]

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
[CrossRef]

2008

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, and C.-K. Sun, “Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye,” Opt. Lett. 33(4), 387–389 (2008).
[CrossRef] [PubMed]

C.-S. Hsieh, S.-U. Chen, Y.-W. Lee, Y.-S. Yang, and C.-K. Sun, “Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,” Opt. Express 16(15), 11574–11588 (2008).
[PubMed]

2007

A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

2006

2005

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[CrossRef] [PubMed]

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

2004

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

2003

2002

T. Dennis, E. A. Curtis, C. W. Oates, L. Hollberg, and S. L. Gilbert, “Wavelength References for 1300-nm Wavelength-Division Multiplexing,” J. Lightwave Technol. 20(5), 776–782 (2002).
[CrossRef]

T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002).
[CrossRef]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

2001

1998

1997

1996

1995

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995).
[CrossRef]

1993

1991

1988

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Alfano, R. R.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Alfimov, M. V.

A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).

A. B. Fedotov, D. A. Sidorov-Biryukov, A. A. Ivanov, M. V. Alfimov, V. I. Beloglazov, N. B. Skibina, C.-K. Sun, and A. M. Zheltikov, “Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses,” J. Opt. Soc. Am. B 23(7), 1471–1477 (2006).
[CrossRef]

Anderson, R. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Angelow, G.

Anzai, H.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Avtukh, A.

Beloglazov, V. I.

Benson, S. V.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Bilinsky, I. P.

Boppart, S. A.

Bouma, B. E.

Carrig, T. J.

T. J. Carrig and C. R. Pollock, “Performance of a Continuous-Wave Forsterite Laser with Krypton Ion, Ti:Sapphire and Nd:YAG Pump Lasers,” IEEE J. Quantum Electron. 29(11), 2835–2844 (1993).
[CrossRef]

T. J. Carrig and C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16(21), 1662–1664 (1991).
[CrossRef] [PubMed]

Chan, M.-C.

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
[CrossRef]

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

Chan, Y.-F.

Chandler, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Chang, C.-H.

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Chang, G.

Chang, H.-H.

T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002).
[CrossRef]

T.-M. Liu, S.-P. Tai, H.-H. Chang, and C.-K. Sun, “Simultaneous multiwavelength generation from a mode-locked all-solid-state Cr:forsterite laser,” Opt. Lett. 26(11), 834–836 (2001).
[CrossRef]

Chen, C.-C.

Chen, I.-H.

Chen, L.-J.

G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
[CrossRef] [PubMed]

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Chen, P. C.

Chen, S. Y.

W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010).
[CrossRef] [PubMed]

T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett. 31(7), 930–932 (2006).
[CrossRef] [PubMed]

Chen, S.-U.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[CrossRef]

C.-S. Hsieh, S.-U. Chen, Y.-W. Lee, Y.-S. Yang, and C.-K. Sun, “Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,” Opt. Express 16(15), 11574–11588 (2008).
[PubMed]

Chen, S.-Y.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[CrossRef]

S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef]

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chen, Y.-C.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003).
[CrossRef] [PubMed]

Chen, Y.-H.

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

Chen, Y.-S.

W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010).
[CrossRef] [PubMed]

Cheng, N.-C.

Cheng, P. C.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
[CrossRef] [PubMed]

Chern, G.-W.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

Chi, S.

M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
[CrossRef]

Chia, S.-H.

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

Chiang, B. L.

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

Chu, S.-W.

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002).
[CrossRef]

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26(23), 1909–1911 (2001).
[CrossRef]

Chudoba, C.

Curtis, E. A.

Dennis, T.

Douglas, D. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Dylla, H. F.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Farinelli, W.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Fedotov, A. B.

Fujimoto, J. G.

Gayen, S. K.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Gilbert, S. L.

Golubovic, B.

Gubeli, J.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Haus, H. A.

Ho, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

Hollberg, L.

Hsieh, C.-S.

Huang, H.-Y.

Ippen, E. P.

Ito, M.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

Ivanov, A.

Ivanov, A. A.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).

A. B. Fedotov, D. A. Sidorov-Biryukov, A. A. Ivanov, M. V. Alfimov, V. I. Beloglazov, N. B. Skibina, C.-K. Sun, and A. M. Zheltikov, “Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses,” J. Opt. Soc. Am. B 23(7), 1471–1477 (2006).
[CrossRef]

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995).
[CrossRef]

Johnson, I.

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
[CrossRef] [PubMed]

Jonusauskas, G.

G. Jonusauskas, J. G. Oberlé, and C. Rullière, “54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite,” Opt. Lett. 23(24), 1918–1920 (1998).
[CrossRef]

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995).
[CrossRef]

Jordan, K.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Kamalov, V.

Kärtner, F. X.

Kuleshov, N. V.

Kung, C.-T.

Lagatsky, A. A.

Lai, Y.

M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
[CrossRef]

Laubach, H.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Lee, C. F.

W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010).
[CrossRef] [PubMed]

Lee, J.-H.

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

Lee, W.-J.

Lee, Y.-W.

Liao, Y.-H.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[CrossRef]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[CrossRef] [PubMed]

Lin, B.-L.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26(23), 1909–1911 (2001).
[CrossRef]

Lin, C.-H.

Lin, C.-Y.

T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett. 31(7), 930–932 (2006).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

Lin, K. H.

Lin, K.-H.

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Lin, K.-J.

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Liu, H.-L.

Liu, J.-Y.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

Liu, T.-M.

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002).
[CrossRef]

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26(23), 1909–1911 (2001).
[CrossRef]

T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Intracavity frequency-doubled femtosecond cr(4+):forsterite laser,” Appl. Opt. 40(12), 1957–1960 (2001).
[CrossRef]

T.-M. Liu, S.-P. Tai, H.-H. Chang, and C.-K. Sun, “Simultaneous multiwavelength generation from a mode-locked all-solid-state Cr:forsterite laser,” Opt. Lett. 26(11), 834–836 (2001).
[CrossRef]

Lyu, J.-Y.

Ma, J.

Manstein, D.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Mikhailov, V.

Mikhailov, V. P.

Minkov, B. I.

Mitrofanov, A. V.

A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).

Morgner, U.

Neil, G. R.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Nishizawa, J.-I.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

Oates, C. W.

Oberlé, J.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995).
[CrossRef]

Oberlé, J. G.

Pang, Y.

Peng, P.-C.

M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
[CrossRef]

Petricevic, V.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Podlipensky, A. V.

Podshivalov, A. A.

A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).

Pollock, C. R.

T. J. Carrig and C. R. Pollock, “Performance of a Continuous-Wave Forsterite Laser with Krypton Ion, Ti:Sapphire and Nd:YAG Pump Lasers,” IEEE J. Quantum Electron. 29(11), 2835–2844 (1993).
[CrossRef]

T. J. Carrig and C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16(21), 1662–1664 (1991).
[CrossRef] [PubMed]

Rullière, C.

G. Jonusauskas, J. G. Oberlé, and C. Rullière, “54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite,” Opt. Lett. 23(24), 1918–1920 (1998).
[CrossRef]

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995).
[CrossRef]

Saito, K.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

Sasaki, T.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

Scheuer, V.

Sennaroglu, A.

Shcherbitsky, V. G.

Shcheslavskiy, V.

Shi, X.-Y.

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Shieh, D.-B.

Shinn, M.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Sidorov-Biryukov, D. A.

Skibina, N. B.

Slobodchikov, E.

Su, G.-D. J.

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

Sun, C. K.

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

Sun, C.-K.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[CrossRef]

W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010).
[CrossRef] [PubMed]

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
[CrossRef]

S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef]

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, and C.-K. Sun, “Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye,” Opt. Lett. 33(4), 387–389 (2008).
[CrossRef] [PubMed]

C.-S. Hsieh, S.-U. Chen, Y.-W. Lee, Y.-S. Yang, and C.-K. Sun, “Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos,” Opt. Express 16(15), 11574–11588 (2008).
[PubMed]

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

A. B. Fedotov, D. A. Sidorov-Biryukov, A. A. Ivanov, M. V. Alfimov, V. I. Beloglazov, N. B. Skibina, C.-K. Sun, and A. M. Zheltikov, “Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses,” J. Opt. Soc. Am. B 23(7), 1471–1477 (2006).
[CrossRef]

S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14(13), 6178–6187 (2006).
[CrossRef] [PubMed]

T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett. 31(7), 930–932 (2006).
[CrossRef] [PubMed]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[CrossRef] [PubMed]

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002).
[CrossRef]

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26(23), 1909–1911 (2001).
[CrossRef]

T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Intracavity frequency-doubled femtosecond cr(4+):forsterite laser,” Appl. Opt. 40(12), 1957–1960 (2001).
[CrossRef]

T.-M. Liu, S.-P. Tai, H.-H. Chang, and C.-K. Sun, “Simultaneous multiwavelength generation from a mode-locked all-solid-state Cr:forsterite laser,” Opt. Lett. 26(11), 834–836 (2001).
[CrossRef]

Suto, K.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

Swanson, E. A.

Tai, S. P.

Tai, S.-P.

C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, and C.-K. Sun, “Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye,” Opt. Lett. 33(4), 387–389 (2008).
[CrossRef] [PubMed]

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14(13), 6178–6187 (2006).
[CrossRef] [PubMed]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[CrossRef] [PubMed]

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

T.-M. Liu, S.-P. Tai, H.-H. Chang, and C.-K. Sun, “Simultaneous multiwavelength generation from a mode-locked all-solid-state Cr:forsterite laser,” Opt. Lett. 26(11), 834–836 (2001).
[CrossRef]

T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Intracavity frequency-doubled femtosecond cr(4+):forsterite laser,” Appl. Opt. 40(12), 1957–1960 (2001).
[CrossRef]

Tanabe, T.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

Tearney, G. J.

Tominaga, K.

Tsai, H. J.

Tsai, H.-J.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

Tsai, T.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett. 31(7), 930–932 (2006).
[CrossRef] [PubMed]

S.-P. Tai, T.-H. Tsai, W.-J. Lee, D.-B. Shieh, Y.-H. Liao, H.-Y. Huang, K. Y.-J. Zhang, H.-L. Liu, and C.-K. Sun, “Optical biopsy of fixed human skin with backward-collected optical harmonics signals,” Opt. Express 13(20), 8231–8242 (2005).
[CrossRef] [PubMed]

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003).
[CrossRef] [PubMed]

Tschudi, T.

Tseng, C.-H.

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

Wang, L.-F.

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

Wen, Y.-C.

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Williams, G. P.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Wise, F.

Wu, H.-Y.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[CrossRef]

S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef]

Wu, P.-C.

Wu, Y.

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Yakovlev, V. V.

Yamagishi, K.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Yamaguchi, Y.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Yang, Y.-S.

Yanovsky, V.

Yaroslavsky, A. N.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Yoshihara, K.

Yu, C.-H.

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express 18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, and C.-K. Sun, “Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye,” Opt. Lett. 33(4), 387–389 (2008).
[CrossRef] [PubMed]

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, “In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy,” Opt. Express 14(13), 6178–6187 (2006).
[CrossRef] [PubMed]

Zhang, K. Y.-J.

Zhavoronkov, N.

Zheltikov, A. M.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).

A. B. Fedotov, D. A. Sidorov-Biryukov, A. A. Ivanov, M. V. Alfimov, V. I. Beloglazov, N. B. Skibina, C.-K. Sun, and A. M. Zheltikov, “Soft-glass photonic-crystal fibers for frequency shifting and white-light spectral superbroadening of femtosecond Cr:forsterite laser pulses,” J. Opt. Soc. Am. B 23(7), 1471–1477 (2006).
[CrossRef]

Adv. Mater.

S.-P. Tai, Y. Wu, D.-B. Shieh, L.-J. Chen, K.-J. Lin, C.-H. Yu, S.-W. Chu, C.-H. Chang, X.-Y. Shi, Y.-C. Wen, K.-H. Lin, T.-M. Liu, and C.-K. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

V. Petričević, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52(13), 1040–1042 (1988).
[CrossRef]

Biophys. J.

S.-W. Chu, S.-Y. Chen, G.-W. Chern, T.-H. Tsai, Y.-C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

T. J. Carrig and C. R. Pollock, “Performance of a Continuous-Wave Forsterite Laser with Krypton Ion, Ti:Sapphire and Nd:YAG Pump Lasers,” IEEE J. Quantum Electron. 29(11), 2835–2844 (1993).
[CrossRef]

T.-M. Liu, H.-H. Chang, S.-W. Chu, and C.-K. Sun, “Locked multichannel generation and management by use of a Fabry-Perot etalon in a mode-locked Cr:forsterite laser cavity,” IEEE J. Quantum Electron. 38(5), 458–463 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,” IEEE J. Sel. Top. Quantum Electron. 16(3), 478–492 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. A. Ivanov, A. M. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2~2.2-μm tunable Raman soliton source based on a Cr:forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett. 20(11), 900–902 (2008).
[CrossRef]

M.-C. Chan, P.-C. Peng, Y. Lai, S. Chi, and C.-K. Sun, “Continuously-Tunable Large-Dynamic-Range RF Phase Shifter via a Soliton Self-Frequency-Shifted Source and a Dispersive Fiber,” IEEE Photon. Technol. Lett. 21(5), 313–315 (2009).
[CrossRef]

J. Biomed. Opt.

W.-J. Lee, C. F. Lee, S. Y. Chen, Y.-S. Chen, and C.-K. Sun, “Virtual biopsy of rat tympanic membrane using higher harmonic generation microscopy,” J. Biomed. Opt. 15(4), 046012 (2010).
[CrossRef] [PubMed]

S.-Y. Chen, H.-Y. Wu, and C.-K. Sun, “In vivo harmonic generation biopsy of human skin,” J. Biomed. Opt. 14(6), 060505 (2009).
[CrossRef]

J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C. K. Sun, and B. L. Chiang, “Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis,” J. Biomed. Opt. 14(1), 014008 (2009).
[CrossRef] [PubMed]

M.-C. Chan, T.-M. Liu, S.-P. Tai, and C.-K. Sun, “Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy,” J. Biomed. Opt. 10(5), 054006 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Struct. Biol.

C.-K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol. 147(1), 19–30 (2004).
[CrossRef] [PubMed]

Lasers Surg. Med.

R. R. Anderson, W. Farinelli, H. Laubach, D. Manstein, A. N. Yaroslavsky, J. Gubeli, K. Jordan, G. R. Neil, M. Shinn, W. Chandler, G. P. Williams, S. V. Benson, D. R. Douglas, and H. F. Dylla, “Selective photothermolysis of lipid-rich tissues: a free electron laser study,” Lasers Surg. Med. 38(10), 913–919 (2006).
[CrossRef] [PubMed]

Microsc. Res. Tech.

M.-C. Chan, S.-W. Chu, C.-H. Tseng, Y.-C. Wen, Y.-H. Chen, G.-D. J. Su, and C.-K. Sun, “Cr:Forsterite-laser-based fiber-optic nonlinear endoscope with higher efficiencies,” Microsc. Res. Tech. 71(8), 559–563 (2008).
[CrossRef] [PubMed]

Opt. Commun.

A. V. Mitrofanov, A. A. Ivanov, M. V. Alfimov, A. A. Podshivalov, and A. M. Zheltikov, “Microjoule supercontinuum generation by stretched megawatt femtosecond laser pulses in a large-mode-area photonic-crystal fiber,” Opt. Commun. 280, 453–456 (2007).

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberlé, and C. Rullière, “Influence of Cr4+ ion conventration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116(1-3), 131–135 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010).
[CrossRef] [PubMed]

T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett. 31(7), 930–932 (2006).
[CrossRef] [PubMed]

C.-H. Yu, S.-P. Tai, C.-T. Kung, W.-J. Lee, Y.-F. Chan, H.-L. Liu, J.-Y. Lyu, and C.-K. Sun, “Molecular third-harmonic-generation microscopy through resonance enhancement with absorbing dye,” Opt. Lett. 33(4), 387–389 (2008).
[CrossRef] [PubMed]

S.-W. Chu, I.-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26(23), 1909–1911 (2001).
[CrossRef]

V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr(4+):Mg(2)SiO(4) oscillator operating at a low repetition rate,” Opt. Lett. 26(24), 1999–2001 (2001).
[CrossRef]

C.-K. Sun, C.-C. Chen, S.-W. Chu, T.-H. Tsai, Y.-C. Chen, and B.-L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28(24), 2488–2490 (2003).
[CrossRef] [PubMed]

T.-M. Liu, S.-P. Tai, H.-H. Chang, and C.-K. Sun, “Simultaneous multiwavelength generation from a mode-locked all-solid-state Cr:forsterite laser,” Opt. Lett. 26(11), 834–836 (2001).
[CrossRef]

C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kärtner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 mum,” Opt. Lett. 26(5), 292–294 (2001).
[CrossRef]

T. J. Carrig and C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16(21), 1662–1664 (1991).
[CrossRef] [PubMed]

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt. Lett. 18(14), 1168–1170 (1993).
[CrossRef] [PubMed]

V. Yanovsky, Y. Pang, F. Wise, and B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18(18), 1541–1543 (1993).
[CrossRef] [PubMed]

N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, and V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23(13), 1028–1030 (1998).
[CrossRef]

G. Jonusauskas, J. G. Oberlé, and C. Rullière, “54-fs, 1-GW, 1-kHz pulse amplification in Cr:forsterite,” Opt. Lett. 23(24), 1918–1920 (1998).
[CrossRef]

E. Slobodchikov, J. Ma, V. Kamalov, K. Tominaga, and K. Yoshihara, “Cavity-dumped femtosecond Kerr-lens mode locking in a chromium-doped forsterite laser,” Opt. Lett. 21(5), 354–356 (1996).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21(17), 1408–1410 (1996).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21(22), 1839–1841 (1996).
[CrossRef] [PubMed]

Opt. Quantum Electron.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. 34(12), 1251–1266 (2002).
[CrossRef]

Rev. Sci. Instrum.

K. Suto, T. Sasaki, T. Tanabe, K. Saito, J.-I. Nishizawa, and M. Ito, “GaP THz wave generator and THz spectrometer using Cr:forsterite lasers,” Rev. Sci. Instrum. 76(12), 123109 (2005).
[CrossRef]

Scanning

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, “Multiphoton confocal microscopy using a femtosecond Cr:forsterite laser,” Scanning 23(4), 249–254 (2001).
[CrossRef] [PubMed]

Other

H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “80-nJ Multipass-Cavity Chirped-Pulse Cr4+:forsterite Laser,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWE3.

Prime Optical Fiber Corp, “Product information of single-mode optical fiber,” http://www.pofc.com/files/file/financial/SMF130V_4.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The output power of the Cr:forsterite laser versus pump power with (a) an 1.4cm−1 absorption constant and (b) an 1.1cm−1 absorption constant: the dots are the experimental data, and the solid lines are the linear fittings. 76% of the incident pump power was absorbed by the crystal.

Fig. 2
Fig. 2

The spectra and the corresponding autocorrelation traces (inset) of the Cr:forsterite laser with (a) 1.4W and (b) 1.3W output power.

Fig. 3
Fig. 3

(a) The spectra of the laser output (red), the fiber output with a fiber length of 3.6m (blue), and the fiber source with a fiber length of 7cm (blue). (b) The corresponding autocorrelation trace of the blue spectrum in (a).

Fig. 4
Fig. 4

The power dependent spectra of the widely-tunable fiber-delivered Cr:forsterite source, including the simultaneously obtained SSFS in (a) and CR below the wavelength of 1100nm in (b). The values inserted in the figure represent the total average output power after the photonic crystal fiber. The inset figure in (a) shows the magnified spectra of the 340mW total fiber output ranging from 2200nm to 2350nm. The inset figure in (b) shows the output powers of CR whose wavelength were below 1100nm (red), and the fiber output above the wavelength of 1100nm (black).

Metrics