Abstract

We propose and experimentally demonstrate a novel kind of Brillouin optical time-domain sensor based on direct modulation of a laser diode (LD) which is free from the use of any microwave device. The Brillouin pump and the probe waves are alternately generated by the LD modulation, and an optical time-domain analysis adopted for distributed measurement. Maps of Brillouin frequency shift are obtained with a spatial resolution of 2 m and an accuracy of ± 2 MHz in a 2 km optical fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
    [CrossRef]
  2. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993).
    [CrossRef] [PubMed]
  3. M. Nikles, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [CrossRef] [PubMed]
  4. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [CrossRef]
  5. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).
  6. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [CrossRef] [PubMed]
  7. H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High-resolution DPP-BOTDA over 50 km LEAF using return-to-zero coded pulses,” Opt. Lett. 35(10), 1503–1505 (2010).
    [CrossRef] [PubMed]
  8. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  9. S. Foaleng-Mafang, J. C. Beugnot, and L. Thevenaz, “Optimized configuration for high-resolution distributed sensing using Brillouin echoes,” Proc. SPIE 7503, 75032C (2009).
    [CrossRef]
  10. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  11. K. Y. Song and H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
    [CrossRef] [PubMed]
  12. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
    [CrossRef]
  13. K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
    [CrossRef]
  14. W. Zou, Z. He, and K. Hotate, “Realization of high-speed distributed sensing based on Brillouin optical correlation domain analysis,” in CLEO/IQEC 2009, paper CMNN5 (2009).
  15. A. W. Brown, J. P. Smith, X. Bao, M. D. Demerchant, and T. Bremner, “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct. 10(4), 340–349 (1999).
    [CrossRef]
  16. K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
    [CrossRef]
  17. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum of an optical fiber using direct frequency modulation of a laser diode,” CLEO/QELS'99, Baltimore, CTuV6, pp.208–209, May 1999.
  18. K. Hotate and T. Yamauchi, “Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme,” Jpn. J. Appl. Phys. 44(32), L1030 (2005).
    [CrossRef]

2010

2009

S. Foaleng-Mafang, J. C. Beugnot, and L. Thevenaz, “Optimized configuration for high-resolution distributed sensing using Brillouin echoes,” Proc. SPIE 7503, 75032C (2009).
[CrossRef]

2008

2007

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

2006

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

2005

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
[CrossRef]

K. Hotate and T. Yamauchi, “Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme,” Jpn. J. Appl. Phys. 44(32), L1030 (2005).
[CrossRef]

2000

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

1999

A. W. Brown, J. P. Smith, X. Bao, M. D. Demerchant, and T. Bremner, “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct. 10(4), 340–349 (1999).
[CrossRef]

1996

1993

1990

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Alahbabi, M. N.

Bao, X.

Beugnot, J. C.

S. Foaleng-Mafang, J. C. Beugnot, and L. Thevenaz, “Optimized configuration for high-resolution distributed sensing using Brillouin echoes,” Proc. SPIE 7503, 75032C (2009).
[CrossRef]

Bolognini, G.

Bremner, T.

A. W. Brown, J. P. Smith, X. Bao, M. D. Demerchant, and T. Bremner, “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct. 10(4), 340–349 (1999).
[CrossRef]

Brown, A. W.

A. W. Brown, J. P. Smith, X. Bao, M. D. Demerchant, and T. Bremner, “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct. 10(4), 340–349 (1999).
[CrossRef]

Chen, L.

Chin, S.

Cho, Y. T.

Demerchant, M. D.

A. W. Brown, J. P. Smith, X. Bao, M. D. Demerchant, and T. Bremner, “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct. 10(4), 340–349 (1999).
[CrossRef]

Di Pasquale, F.

Foaleng-Mafang, S.

S. Foaleng-Mafang, J. C. Beugnot, and L. Thevenaz, “Optimized configuration for high-resolution distributed sensing using Brillouin echoes,” Proc. SPIE 7503, 75032C (2009).
[CrossRef]

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

He, Z.

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Hotate, K.

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Hotate and T. Yamauchi, “Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme,” Jpn. J. Appl. Phys. 44(32), L1030 (2005).
[CrossRef]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

Jackson, D. A.

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Li, W.

Li, Y.

Liang, H.

Linze, N.

Newson, T. P.

Nikles, M.

Primerov, N.

Robert, P. A.

Smith, J. P.

A. W. Brown, J. P. Smith, X. Bao, M. D. Demerchant, and T. Bremner, “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct. 10(4), 340–349 (1999).
[CrossRef]

Song, K. Y.

K. Y. Song and H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
[CrossRef] [PubMed]

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Soto, M. A.

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Thevenaz, L.

S. Foaleng-Mafang, J. C. Beugnot, and L. Thevenaz, “Optimized configuration for high-resolution distributed sensing using Brillouin echoes,” Proc. SPIE 7503, 75032C (2009).
[CrossRef]

Thévenaz, L.

Webb, D. J.

Yamauchi, T.

K. Hotate and T. Yamauchi, “Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme,” Jpn. J. Appl. Phys. 44(32), L1030 (2005).
[CrossRef]

Yoon, H. J.

E

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron,” E 83-C, 405–412 (2000).

IEEE Photon. Technol. Lett.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

J. Intell. Mater. Syst. Struct.

A. W. Brown, J. P. Smith, X. Bao, M. D. Demerchant, and T. Bremner, “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct. 10(4), 340–349 (1999).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

K. Hotate and T. Yamauchi, “Fiber-optic distributed strain sensing system by Brillouin optical correlation domain analysis with a simple and accurate time-division pump-probe generation scheme,” Jpn. J. Appl. Phys. 44(32), L1030 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

S. Foaleng-Mafang, J. C. Beugnot, and L. Thevenaz, “Optimized configuration for high-resolution distributed sensing using Brillouin echoes,” Proc. SPIE 7503, 75032C (2009).
[CrossRef]

Other

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum of an optical fiber using direct frequency modulation of a laser diode,” CLEO/QELS'99, Baltimore, CTuV6, pp.208–209, May 1999.

W. Zou, Z. He, and K. Hotate, “Realization of high-speed distributed sensing based on Brillouin optical correlation domain analysis,” in CLEO/IQEC 2009, paper CMNN5 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Time-division pump-probe generation and (b) schematic view of the simplified BOTDA system.

Fig. 2
Fig. 2

The generation process and the resultant shape of the pump-probe wave used for the simplified BOTDA system. (a) Ideal RF wave (top) applied to the LD and the resultant variation of the optical frequency (bottom). (b) Compensated RF wave (top) applied to the LD and the final pump-probe wave (bottom). (c) Zoomed views of the generated pump (top) and probe (bottom) sections. Note that the red curves are the averaged results suppressing the dark current noise in the slope-filter method.

Fig. 3
Fig. 3

Experimental setup of the simplified BOTDA system: VOA, variable optical attenuator; FUT, fiber under test; PD, Photo detector; DAQ, data acquisition card; EOM, electro-optic modulator; FBG, fiber Bragg grating; EDFA, Er-doped fiber amplifier. The inset shows the structure of the FUT.

Fig. 4
Fig. 4

(a) Time-traces obtained by the simplified BOTDA system with Δν of 10.78, 10.86, and 10.92 GHz. (b) BGS measured at the middle position of the FUT (dashed line in (a)).

Fig. 5
Fig. 5

(a) A distribution map of νB obtained by the simplified BOTDA system (bottom) with a zoomed view of the dash-boxed position (top) which shows the results of two separate measurements (red dot and black curve) for comparison (b) Distributed measurements of the νB -variation (ΔνB ) with strains of 200, 400, 600, and 800 με applied to the test sections near the end of the FUT.

Fig. 6
Fig. 6

(a) Brillouin frequency shift (ΔνB ) of one of the test sections as a function of the applied strain measured by the simplified BOTDA system. (b) Acquired 3D BGS near the test sections with a strain of 800 με.

Metrics