Abstract

A spectral line-by-line pulse shaper is used to experimentally generate and deliver ~1 ps optical pulses of 31~124 GHz repetition-rates over 25.33 km single-mode fiber without dispersion-compensating fiber. The correlation of such delivery capability to temporal Talbot effect is experimentally demonstrated. Incorporating shaper periodic phase control, the repetition-rates of these ~1 ps optical pulses are further multiplied up to 496 GHz and delivered over 25.33 km single-mode fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
    [CrossRef]
  2. F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
    [CrossRef]
  3. A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightwave Technol. 21(10), 2145–2153 (2003).
    [CrossRef]
  4. T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
    [CrossRef]
  5. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
    [CrossRef] [PubMed]
  6. C.-B. Huang and Y. C. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett. 12(2), 167–169 (2000).
    [CrossRef]
  7. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
    [CrossRef]
  8. J. Azaña and S. Gupta, “Complete family of periodic Talbot filters for pulse repetition rate multiplication,” Opt. Express 14(10), 4270–4279 (2006).
    [CrossRef] [PubMed]
  9. D. Pudo and L. R. Chen, “Tunable passive all-optical pulse repetition rate multiplier using fiber Bragg gratings,” J. Lightwave Technol. 23(4), 1729–1733 (2005).
    [CrossRef]
  10. J. Magné, J. Bolger, M. Rochette, S. LaRochelle, L. R. Chen, B. J. Eggleton, and J. Azaña, “4x100 GHz pulse train generation from a single wavelength 10 GHz mode-locked laser using superimposed fiber gratings and nonlinear conversion,” J. Lightwave Technol. 24, 2091–2099 (2006).
    [CrossRef]
  11. M. A. Preciado and M. A. Muriel, “Ultrafast all-optical Nth-order differentiator and simultaneous repetition-rate multiplier of periodic pulse train,” Opt. Express 15(19), 12102–12107 (2007).
    [CrossRef] [PubMed]
  12. D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
    [CrossRef]
  13. P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
    [CrossRef]
  14. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16(3), 405–410 (1998).
    [CrossRef]
  15. G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
    [CrossRef]
  16. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  17. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  18. C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998).
    [CrossRef]
  19. Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated 500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett. 30(12), 1449–1451 (2005).
    [CrossRef] [PubMed]
  20. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
    [CrossRef] [PubMed]
  21. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [CrossRef]
  22. J. Ye, and S. T. Cundiff, eds., Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).
  23. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
    [CrossRef]
  24. C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
    [CrossRef] [PubMed]
  25. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
    [CrossRef] [PubMed]
  26. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
    [CrossRef] [PubMed]
  27. V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
    [CrossRef] [PubMed]
  28. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping for optical arbitrary pulse train generation,” J. Opt. Soc. Am. B 24(9), 2124–2128 (2007).
    [CrossRef]
  29. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
    [CrossRef] [PubMed]
  30. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Simultaneous repetition-rate multiplication and envelope control based on periodic phase-only and phase-mostly line-by-line pulse shaping,” J. Opt. Soc. Am. B 24(12), 3034–3039 (2007).
    [CrossRef]
  31. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
    [CrossRef] [PubMed]
  32. C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
    [CrossRef]
  33. C.-B. Huang and A. M. Weiner, “Analysis of time-multiplexed optical line-by-line pulse shaping: application for radio-frequency and microwave photonics,” Opt. Express 18(9), 9366–9377 (2010).
    [CrossRef] [PubMed]
  34. D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
    [CrossRef]
  35. D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
    [CrossRef]
  36. D. Duchesne, R. Morandotti, and J. Azaña, “Temporal Talbot phenomena in higher-order dispersive media,” J. Opt. Soc. Am. B 24(1), 113–125 (2007).
    [CrossRef]
  37. J. Fatome, S. Pitois, and G. Millot, “Influence of third-order dispersion on the temporal Talbot effect,” Opt. Commun. 234(1-6), 29–34 (2004).
    [CrossRef]
  38. L. Chantada, C. R. Fernández-Pousa, and C. Gómez-Reino, “Spectral analysis of the temporal self-imaging phenomenon in fiber dispersive lines,” J. Lightwave Technol. 24(5), 2015–2025 (2006).
    [CrossRef]

2010 (4)

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

C.-B. Huang and A. M. Weiner, “Analysis of time-multiplexed optical line-by-line pulse shaping: application for radio-frequency and microwave photonics,” Opt. Express 18(9), 9366–9377 (2010).
[CrossRef] [PubMed]

2009 (4)

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[CrossRef] [PubMed]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[CrossRef]

2008 (2)

2007 (8)

D. Duchesne, R. Morandotti, and J. Azaña, “Temporal Talbot phenomena in higher-order dispersive media,” J. Opt. Soc. Am. B 24(1), 113–125 (2007).
[CrossRef]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[CrossRef] [PubMed]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping for optical arbitrary pulse train generation,” J. Opt. Soc. Am. B 24(9), 2124–2128 (2007).
[CrossRef]

M. A. Preciado and M. A. Muriel, “Ultrafast all-optical Nth-order differentiator and simultaneous repetition-rate multiplier of periodic pulse train,” Opt. Express 15(19), 12102–12107 (2007).
[CrossRef] [PubMed]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Simultaneous repetition-rate multiplication and envelope control based on periodic phase-only and phase-mostly line-by-line pulse shaping,” J. Opt. Soc. Am. B 24(12), 3034–3039 (2007).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

2006 (4)

2005 (5)

2004 (1)

J. Fatome, S. Pitois, and G. Millot, “Influence of third-order dispersion on the temporal Talbot effect,” Opt. Commun. 234(1-6), 29–34 (2004).
[CrossRef]

2003 (1)

2001 (2)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

2000 (2)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

C.-B. Huang and Y. C. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett. 12(2), 167–169 (2000).
[CrossRef]

1998 (2)

1989 (1)

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[CrossRef]

Arahira, S.

Azaña, J.

Ben Yoo, S. J.

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

Berrettini, G.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
[CrossRef]

Bogoni, A.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
[CrossRef]

Bolger, J.

Braje, D. A.

Callender, C. L.

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

Cao, J.

Caraquitena, J.

Chang, C.-C.

Chantada, L.

Chen, L. R.

Chen, N.-W.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Chiang, H.-C.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Chiou, H.-K.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Chuang, H.-P.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Diddams, S. A.

Duchesne, D.

Dumais, P.

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

Eggleton, B. J.

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, “Influence of third-order dispersion on the temporal Talbot effect,” Opt. Commun. 234(1-6), 29–34 (2004).
[CrossRef]

Fernández-Pousa, C. R.

Fontaine, N. K.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Fortier, T. M.

Geisler, D. J.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

Gómez-Reino, C.

Guglielmucci, M.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
[CrossRef]

Gupta, S.

Harada, M.

He, T.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

Heritage, J. P.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Hirata, A.

Hollberg, L.

Huang, C.-B.

C.-B. Huang and A. M. Weiner, “Analysis of time-multiplexed optical line-by-line pulse shaping: application for radio-frequency and microwave photonics,” Opt. Express 18(9), 9366–9377 (2010).
[CrossRef] [PubMed]

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping for optical arbitrary pulse train generation,” J. Opt. Soc. Am. B 24(9), 2124–2128 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[CrossRef]

C.-B. Huang and Y. C. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett. 12(2), 167–169 (2000).
[CrossRef]

Ishii, M.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

Jacob, S.

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

Jiang, W.

Jiang, Z.

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Simultaneous repetition-rate multiplication and envelope control based on periodic phase-only and phase-mostly line-by-line pulse shaping,” J. Opt. Soc. Am. B 24(12), 3034–3039 (2007).
[CrossRef]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping for optical arbitrary pulse train generation,” J. Opt. Soc. Am. B 24(9), 2124–2128 (2007).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated 500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett. 30(12), 1449–1451 (2005).
[CrossRef] [PubMed]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

Kamei, S.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

Karalar, A.

Kirchner, M. S.

Kolner, B. H.

Kostko, I. A.

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

Kunimatsu, D.

Kuo, F.-M.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Kutsuzawa, S.

Lai, Y. C.

C.-B. Huang and Y. C. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett. 12(2), 167–169 (2000).
[CrossRef]

LaRochelle, S.

Leaird, D. E.

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[CrossRef] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Simultaneous repetition-rate multiplication and envelope control based on periodic phase-only and phase-mostly line-by-line pulse shaping,” J. Opt. Soc. Am. B 24(12), 3034–3039 (2007).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping for optical arbitrary pulse train generation,” J. Opt. Soc. Am. B 24(9), 2124–2128 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated 500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett. 30(12), 1449–1451 (2005).
[CrossRef] [PubMed]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

Magné, J.

Matsui, Y.

Meloni, G.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
[CrossRef]

Millot, G.

J. Fatome, S. Pitois, and G. Millot, “Influence of third-order dispersion on the temporal Talbot effect,” Opt. Commun. 234(1-6), 29–34 (2004).
[CrossRef]

Morandotti, R.

Muriel, M. A.

M. A. Preciado and M. A. Muriel, “Ultrafast all-optical Nth-order differentiator and simultaneous repetition-rate multiplier of periodic pulse train,” Opt. Express 15(19), 12102–12107 (2007).
[CrossRef] [PubMed]

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

Nagatsuma, T.

Ogawa, Y.

Okamoto, K.

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

Pan, C.-L.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Paraschis, L.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

Park, S.-G.

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, “Influence of third-order dispersion on the temporal Talbot effect,” Opt. Commun. 234(1-6), 29–34 (2004).
[CrossRef]

Poti, L.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
[CrossRef]

Preciado, M. A.

Pudo, D.

Rochette, M.

Samadi, P.

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

Sardesai, H. P.

Scaffardi, M.

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
[CrossRef]

Scott, R. P.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Seo, D. S.

Shen, S.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

Shi, J.-W.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Shia, B.

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

Sizer, T.

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[CrossRef]

Sugita, A.

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

Supradeepa, V. R.

Tsai, H.-J.

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

Weiner, A. M.

C.-B. Huang and A. M. Weiner, “Analysis of time-multiplexed optical line-by-line pulse shaping: application for radio-frequency and microwave photonics,” Opt. Express 18(9), 9366–9377 (2010).
[CrossRef] [PubMed]

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[CrossRef] [PubMed]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

C.-B. Huang, S.-G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008).
[CrossRef] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Simultaneous repetition-rate multiplication and envelope control based on periodic phase-only and phase-mostly line-by-line pulse shaping,” J. Opt. Soc. Am. B 24(12), 3034–3039 (2007).
[CrossRef]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping for optical arbitrary pulse train generation,” J. Opt. Soc. Am. B 24(9), 2124–2128 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated 500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett. 30(12), 1449–1451 (2005).
[CrossRef] [PubMed]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998).
[CrossRef]

Wells, J.

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[CrossRef]

Yang, S.-D.

Yoo, S. J. B.

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Electron. Lett. (2)

G. Meloni, G. Berrettini, M. Scaffardi, A. Bogoni, L. Poti, and M. Guglielmucci, “250-times repetition frequency multiplication for 2.5 THz clock signal generation,” Electron. Lett. 41(23), 1294 (2005).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “High-rate femtosecond pulse generation via line-by-line processing of a phase-modulated CW laser frequency comb,” Electron. Lett. 42(19), 1114–1115 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Sizer, “Increase in laser repetition rate by spectral selection,” IEEE J. Quantum Electron. 25(1), 97–103 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[CrossRef]

IEEE Microw. Mag. (1)

J. Wells, “Faster than fiber: the future of multi-Gb/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[CrossRef]

IEEE Photon. J. (1)

F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral power enhancement in a 100-GHz photonic millimeter-wave generator enabled by spectral line-by-line pulse shaping,” IEEE Photon. J. 2(5), 719–727 (2010).
[CrossRef]

IEEE Photon. Lett. (1)

D. E. Leaird, S. Shen, A. M. Weiner, A. Sugita, S. Kamei, M. Ishii, and K. Okamoto, “Generation of high repetition rate WDM pulse trains from an arrayed-waveguide grating,” IEEE Photon. Lett. 13(3), 221–223 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

P. Samadi, L. R. Chen, I. A. Kostko, P. Dumais, C. L. Callender, S. Jacob, and B. Shia, “Generating 4x20 and 4x40 GHz pulse trains from a single 10-GHz mode-locked laser using a tunable planar lightwave circuit,” IEEE Photon. Technol. Lett. 22(5), 281–282 (2010).
[CrossRef]

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, K. Okamoto, J. P. Heritage, and S. J. Ben Yoo, “360 Gb/s optical transmitter with arbitrary modulation format and dispersion precompensation,” IEEE Photon. Technol. Lett. 21(7), 489–491 (2009).
[CrossRef]

D. J. Geisler, N. K. Fontaine, R. P. Scott, T. He, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “400-Gb/s Modulation-Format-Independent Single-Channel Transmission With Chromatic Dispersion Precompensation Based on OAWG,” IEEE Photon. Technol. Lett. 22(12), 905–907 (2010).
[CrossRef]

C.-B. Huang and Y. C. Lai, “Loss-less pulse intensity repetition-rate multiplication using optical all-pass filtering,” IEEE Photon. Technol. Lett. 12(2), 167–169 (2000).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (3)

Nat. Photonics (1)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[CrossRef]

Opt. Commun. (1)

J. Fatome, S. Pitois, and G. Millot, “Influence of third-order dispersion on the temporal Talbot effect,” Opt. Commun. 234(1-6), 29–34 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Time-multiplexed photonically enabled radio-frequency arbitrary waveform generation with 100 ps transitions,” Opt. Lett. 32(22), 3242–3244 (2007).
[CrossRef] [PubMed]

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[CrossRef] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[CrossRef] [PubMed]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated 500 fs pulse transmission over 50 km single-mode fiber,” Opt. Lett. 30(12), 1449–1451 (2005).
[CrossRef] [PubMed]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Spectral line-by-line pulse shaping,” Opt. Lett. 30(12), 1557–1559 (2005).
[CrossRef] [PubMed]

C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23(4), 283–285 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Other (2)

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

J. Ye, and S. T. Cundiff, eds., Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. PA: power amplifier; frep: comb frequency spacing; EDFA: erbium-doped fiber amplifier; SMF: single-mode fiber; b2b: back-to-back; OSA: optical spectrum analyzer. (b) 31 GHz comb optical power spectrum. The arrow indicates the CW laser wavelength. (c) Experimental (dot) and calculated (solid) intensity autocorrelation traces for the b2b case.

Fig. 2
Fig. 2

(a) Experimental (dotted) and calculated (solid) IA traces of the 31 GHz, 0.93 ps optical pulses after 20.46 km of SMF without dispersion pre-compensation. (b) Φrem of the 20.46 km SMF in units of 2π.

Fig. 3
Fig. 3

31 GHz, 0.93 ps optical pulses after 25.33 km of SMF: (a) Experimental (dotted) and calculated (solid) IA traces without dispersion pre-compensation. (b) Dispersion pre-compensation values in units of 2π applied by the LCM onto the comb lines. (c) Dispersion pre-compensated IA traces (dot: experiment; solid, calculation). (d) Remaining uncompensated spectral phase in units of 2π.

Fig. 4
Fig. 4

(a-c) Optical power spectra of (62, 93, and 124)-GHz comb using shaper amplitude control, respectively. Experimental and calculated dispersion pre-compensated pulse train IA traces delivered over 25 km SMF for (d) 62, (e) 93, and (f) 124 GHz spacing combs. In (d-f), the de-convolved pulse duration and peak SHG readings are labeled.

Fig. 5
Fig. 5

Experimental (symbol) and calculated (solid) IA traces of ultrahigh-rate optical pulse train generated and delivered over 25.33 km SMF using temporal Talbot phase control for 2- and 4-times RRM onto (a) 31 GHz, (b) 62 GHz, (c) 93 GHz, and (d) 124 GHz combs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ f , N L ( ω ˜ k ) = ( β 2 ω ˜ k 2 / 2 + β 3 ω ˜ k 3 / 6 ) L ,
Φ f , N L ( ω ˜ k ) = N k 2 π + Φ r e m ( ω ˜ k ) ,
Φ p c , 25 k m ( ω ˜ k ) = Φ r e m , 25 k m ( ω ˜ k )

Metrics