Abstract

An air-bridged silicon-based photonic crystal coupled-cavity waveguide (PCCCW) connected with an input and output W1 PC waveguide (PCW) was designed and fabricated. We mapped its intensity distributions with a near-field scanning optical microscope (NSOM) at near-infrared wavelengths around 1550 nm. Surprisingly, the intensity distributions demonstrate that the second odd eigenmode dominates in such a PCCCW, even though it possesses a much slower group velocity of light than that of the first even one. Further considering the measured transmission spectrum, we find that the modal profile and impedance matching between the eigenmodes in the PCW and PCCCW plays an important role in the optical propagation efficiency. Mode conversion between the first even and the second odd eigenmode was also detected at the interfaces between the W1 PCW and PCCCW.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  2. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
    [CrossRef]
  3. M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A, Pure Appl. Opt. 10(6), 064002 (2008).
    [CrossRef]
  4. J. Hou, H. Wu, D. S. Citrin, W. Mo, D. Gao, and Z. Zhou, “Wideband slow light in chirped slot photonic-crystal coupled waveguides,” Opt. Express 18(10), 10567–10580 (2010).
    [CrossRef] [PubMed]
  5. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
    [CrossRef] [PubMed]
  6. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [CrossRef]
  7. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  8. V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
    [CrossRef] [PubMed]
  9. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
    [CrossRef]
  10. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef]
  11. A. Martínez, A. García, P. Sanchis, and J. Martí, “Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals,” J. Opt. Soc. Am. A 20(1), 147–150 (2003).
    [CrossRef]
  12. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
    [CrossRef]
  13. A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
    [CrossRef]
  14. M. L. Povinelli and S. H. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett. 89(19), 191114 (2006).
    [CrossRef]
  15. C. J. Jin, N. P. Johnson, H. M. H. Chong, A. S. Jugessur, S. Day, D. Gallagher, and R. M. De La Rue, “Transmission of photonic crystal coupled-resonator waveguide (PhCCRW) structure enhanced via mode matching,” Opt. Express 13(7), 2295–2302 (2005).
    [CrossRef] [PubMed]
  16. P. Sanchis, J. Marti, P. Bienstman, and R. Baets, “Semianalytic approach for analyzing coupling issues in photonic crystal structures,” Appl. Phys. Lett. 87(20), 203107 (2005).
    [CrossRef]
  17. P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
    [CrossRef]
  18. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
    [CrossRef] [PubMed]
  19. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  20. Z. Y. Li, L. L. Lin, and K. M. Ho, “Light coupling with multimode photonic crystal waveguides,” Appl. Phys. Lett. 84(23), 4699–4701 (2004).
    [CrossRef]
  21. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
    [CrossRef] [PubMed]
  22. B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
    [CrossRef]
  23. P. Tortora, M. Abashin, I. Märki, W. Nakagawa, L. Vaccaro, M. Salt, H. P. Herzig, U. Levy, and Y. Fainman, “Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 microm by use of heterodyne scanning near-field optical microscopy,” Opt. Lett. 30(21), 2885–2887 (2005).
    [CrossRef] [PubMed]
  24. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14(4), 1643–1657 (2006).
    [CrossRef] [PubMed]
  25. N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
    [CrossRef] [PubMed]
  26. B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
    [CrossRef]
  27. S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
    [CrossRef]
  28. H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
    [CrossRef]
  29. A. Mekis, S. H. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guid. Wave Lett. 9(12), 502–504 (1999).
    [CrossRef]
  30. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
    [CrossRef] [PubMed]

2010

2009

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

2008

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008).
[CrossRef] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A, Pure Appl. Opt. 10(6), 064002 (2008).
[CrossRef]

2007

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

2006

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

M. L. Povinelli and S. H. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett. 89(19), 191114 (2006).
[CrossRef]

Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
[CrossRef] [PubMed]

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14(4), 1643–1657 (2006).
[CrossRef] [PubMed]

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

2005

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

P. Tortora, M. Abashin, I. Märki, W. Nakagawa, L. Vaccaro, M. Salt, H. P. Herzig, U. Levy, and Y. Fainman, “Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 microm by use of heterodyne scanning near-field optical microscopy,” Opt. Lett. 30(21), 2885–2887 (2005).
[CrossRef] [PubMed]

C. J. Jin, N. P. Johnson, H. M. H. Chong, A. S. Jugessur, S. Day, D. Gallagher, and R. M. De La Rue, “Transmission of photonic crystal coupled-resonator waveguide (PhCCRW) structure enhanced via mode matching,” Opt. Express 13(7), 2295–2302 (2005).
[CrossRef] [PubMed]

P. Sanchis, J. Marti, P. Bienstman, and R. Baets, “Semianalytic approach for analyzing coupling issues in photonic crystal structures,” Appl. Phys. Lett. 87(20), 203107 (2005).
[CrossRef]

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
[CrossRef]

2004

Z. Y. Li, L. L. Lin, and K. M. Ho, “Light coupling with multimode photonic crystal waveguides,” Appl. Phys. Lett. 84(23), 4699–4701 (2004).
[CrossRef]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

2003

2002

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

1999

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

A. Mekis, S. H. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guid. Wave Lett. 9(12), 502–504 (1999).
[CrossRef]

Abashin, M.

Adachi, J.

Anand, S.

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

Aubin, G.

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

Baba, T.

Baets, R.

P. Sanchis, J. Marti, P. Bienstman, and R. Baets, “Semianalytic approach for analyzing coupling issues in photonic crystal structures,” Appl. Phys. Lett. 87(20), 203107 (2005).
[CrossRef]

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

Bandaru, P. R.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Bermel, P.

Berrier, A.

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

Bienstman, P.

P. Sanchis, J. Marti, P. Bienstman, and R. Baets, “Semianalytic approach for analyzing coupling issues in photonic crystal structures,” Appl. Phys. Lett. 87(20), 203107 (2005).
[CrossRef]

Bogaerts, W.

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

Borel, P. I.

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

Brown, D. H.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
[CrossRef]

Burr, G. W.

Callard, S.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

Calvo, V.

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

Charvolin, T.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

Cheng, B. Y.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Chong, H. M. H.

Cincotti, G.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A, Pure Appl. Opt. 10(6), 064002 (2008).
[CrossRef]

Citrin, D. S.

Cluzel, B.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Day, S.

de Fornel, F.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

De La Rue, R. M.

Dumon, P.

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

Fage-Pedersen, J.

Fainman, Y.

Fan, S. H.

M. L. Povinelli and S. H. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett. 89(19), 191114 (2006).
[CrossRef]

A. Mekis, S. H. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guid. Wave Lett. 9(12), 502–504 (1999).
[CrossRef]

Farjadpour, A.

Feng, S.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Frandsen, L. H.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
[CrossRef]

Gallagher, D.

Gao, D.

García, A.

Gérard, D.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Hadji, E.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

Herzig, H. P.

Ho, K. M.

Z. Y. Li, L. L. Lin, and K. M. Ho, “Light coupling with multimode photonic crystal waveguides,” Appl. Phys. Lett. 84(23), 4699–4701 (2004).
[CrossRef]

Hou, J.

Ibanescu, M.

Jin, C. J.

Joannopoulos, J. D.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef] [PubMed]

A. Mekis, S. H. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guid. Wave Lett. 9(12), 502–504 (1999).
[CrossRef]

Johnson, N. P.

Johnson, S. G.

Jugessur, A. S.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
[CrossRef]

Kawaaski, T.

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
[CrossRef]

Kristensen, M.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

Lalanne, P.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

Lalouät, L.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

Lavrinenko, A. V.

Lee, R. K.

Letartre, X.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

Levy, U.

Li, Z. Y.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Z. Y. Li, L. L. Lin, and K. M. Ho, “Light coupling with multimode photonic crystal waveguides,” Appl. Phys. Lett. 84(23), 4699–4701 (2004).
[CrossRef]

Lin, L. L.

Z. Y. Li, L. L. Lin, and K. M. Ho, “Light coupling with multimode photonic crystal waveguides,” Appl. Phys. Lett. 84(23), 4699–4701 (2004).
[CrossRef]

Liu, R. J.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Liu, Y. Z.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Louvion, N.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

Ma, H. Q.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Märki, I.

Marti, J.

P. Sanchis, J. Marti, P. Bienstman, and R. Baets, “Semianalytic approach for analyzing coupling issues in photonic crystal structures,” Appl. Phys. Lett. 87(20), 203107 (2005).
[CrossRef]

Martí, J.

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

A. Martínez, A. García, P. Sanchis, and J. Martí, “Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals,” J. Opt. Soc. Am. A 20(1), 147–150 (2003).
[CrossRef]

Martínez, A.

McNab, S. J.

Mekis, A.

A. Mekis, S. H. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guid. Wave Lett. 9(12), 502–504 (1999).
[CrossRef]

Mo, W.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Mookherjea, S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Moreolo, M. S.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A, Pure Appl. Opt. 10(6), 064002 (2008).
[CrossRef]

Mori, D.

Morra, V.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A, Pure Appl. Opt. 10(6), 064002 (2008).
[CrossRef]

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Mouette, J.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

Mulot, M.

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

Nakagawa, W.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Park, J. S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Picard, E.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli and S. H. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett. 89(19), 191114 (2006).
[CrossRef]

Rahmani, A.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

Ren, C.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Rodriguez, A.

Roundy, D.

Salt, M.

Sanchis, P.

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

P. Sanchis, J. Marti, P. Bienstman, and R. Baets, “Semianalytic approach for analyzing coupling issues in photonic crystal structures,” Appl. Phys. Lett. 87(20), 203107 (2005).
[CrossRef]

A. Martínez, A. García, P. Sanchis, and J. Martí, “Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals,” J. Opt. Soc. Am. A 20(1), 147–150 (2003).
[CrossRef]

Sasaki, H.

Sauvan, C.

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

Scherer, A.

Seassal, C.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Søndergaard, T.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

Steer, M.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Talneau, A.

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

Tao, H. H.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Tortora, P.

Uddhammar, A.

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

Vaccaro, L.

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

Van Thourhout, D.

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

Vlasov, Y. A.

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Wilson, R.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
[CrossRef]

Wu, H.

Wu, L. A.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Xu, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yang, S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Yariv, A.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Zhang, D. Z.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Zhang, Z. B.

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Zhou, Z.

Appl. Phys. Lett.

A. Talneau, G. Aubin, A. Uddhammar, A. Berrier, M. Mulot, and S. Anand, “Highly dispersive photonic crystal-based coupled-cavity structures,” Appl. Phys. Lett. 88(20), 201106 (2006).
[CrossRef]

M. L. Povinelli and S. H. Fan, “Radiation loss of coupled-resonator waveguides in photonic-crystal slabs,” Appl. Phys. Lett. 89(19), 191114 (2006).
[CrossRef]

P. Sanchis, J. Marti, P. Bienstman, and R. Baets, “Semianalytic approach for analyzing coupling issues in photonic crystal structures,” Appl. Phys. Lett. 87(20), 203107 (2005).
[CrossRef]

Z. Y. Li, L. L. Lin, and K. M. Ho, “Light coupling with multimode photonic crystal waveguides,” Appl. Phys. Lett. 84(23), 4699–4701 (2004).
[CrossRef]

B. Cluzel, D. Gérard, E. Picard, T. Charvolin, V. Calvo, E. Hadji, and F. de Fornel, “Experimental demonstration of Bloch mode parity change in photonic crystal waveguide,” Appl. Phys. Lett. 85(14), 2682–2684 (2004).
[CrossRef]

B. Cluzel, E. Picard, T. Charvolin, E. Hadji, L. Lalouät, F. de Fornel, C. Sauvan, and P. Lalanne, “Near-field spectroscopy of low-loss waveguide integrated microcavities,” Appl. Phys. Lett. 88(5), 051112–051114 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8(4), 909–918 (2002).
[CrossRef]

IEEE Microw. Guid. Wave Lett.

A. Mekis, S. H. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guid. Wave Lett. 9(12), 502–504 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Sanchis, J. Martí, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Experimental results on adiabatic coupling into SOI photonic crystal coupled-cavity waveguides,” IEEE Photon. Technol. Lett. 17(6), 1199–1201 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A, Pure Appl. Opt. 10(6), 064002 (2008).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

V. S. Volkov, S. I. Bozhevolnyi, L. H. Frandsen, and M. Kristensen, “Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides,” Nano Lett. 7(8), 2341–2345 (2007).
[CrossRef] [PubMed]

Nat. Photonics

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, “Near-field characterization of low-loss photonic crystal waveguides,” Phys. Rev. B 72(3), 035118–035124 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics,” Phys. Rev. B 66(23), 235204 (2002).
[CrossRef]

H. H. Tao, R. J. Liu, Z. Y. Li, S. Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, “Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy,” Phys. Rev. B 74(20), 205111 (2006).
[CrossRef]

Phys. Rev. Lett.

N. Louvion, D. Gérard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, “Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity,” Phys. Rev. Lett. 94(11), 113907 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903–073905 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated band diagrams of (a) the PCCCW with an inset of the supercell model (Rd = 112 nm) and (b) the traditional W1 PCW for the TE-like polarized modes.

Fig. 2
Fig. 2

(a) Normalized group velocity as a function of frequency for TE-like polarized eigenmodes of PCCCW and (b) that of the traditional W1 PCW derived from Fig. 1.

Fig. 3
Fig. 3

(a) SEM image of the element composed of the central PCCCW, two identical W1 PCWs and the input/output ridge waveguides; (b) Measured transmission spectrum with the inset of a bright optical spot image at 1580 nm at the outlet observed by the infrared CCD camera.

Fig. 4
Fig. 4

(a) SEM topographic image, and the near-field optical intensity distributions at (b) 1550 nm, (c) 1560 nm, (d) 1571 nm, (e) 1590 nm, and (f) 1610 nm. The white dotted lines in each optical picture denote the interface between the W1 PCW and PCCCW. All pictures were obtained for the same scanning area of 12 × 15 μm2.

Fig. 5
Fig. 5

Typical NSOM transverse field distribution profiles of the PCCCW sections labeled in Fig. 4 at (a) 1550 nm, (b) 1560 nm, (c) 1571 nm, and (d) 1610 nm.

Fig. 6
Fig. 6

(M1) Simulation model and calculated optical field distributions at (a1) 1550 nm, (b1) 1560 nm, (c1) 1571 nm, (d1) 1590 nm, and (e1) 1610 nm; (M2) Simulation model and calculated optical field distributions at 1550 nm, 1560 nm, and 1571 nm with the even-to-odd amplitude ratios of (a2) 1:4, (b2)1:1, and (c2) 1:4, (c3) 1:6, respectively.

Metrics