Abstract

The spatio-temporal coupling of shaped laser pulses is measured using scanning SEA TADPOLE as a function of propagation distance through the focal region of a plano-convex lens. A double pulse sequence is measured to have a gradually changing spectral phase across the beam front as a function of propagation distance. When a sinusoidal spectral phase is applied to the shaper a saw-tooth spectral amplitude is measured across the beam front before and after the focal plane of the lens. The measured spatio-spectral phase and amplitude for these two common pulse shapes are consistent with the predictions of a theoretical model.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77(4), 043416 (2008).
    [CrossRef]
  2. M. A. Coughlan, M. Plewicki, and R. J. Levis, “Parametric spatio-temporal control of focusing laser pulses,” Opt. Express 17(18), 15808–15820 (2009).
    [CrossRef] [PubMed]
  3. M. A. Walker, P. Hansch, and L. D. Van Woerkom, “Intensity-resolved multiphoton ionization: Circumventing spatial averaging,” Phys. Rev. A 57(2), R701–R704 (1998).
    [CrossRef]
  4. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
    [CrossRef] [PubMed]
  5. M. B. Danailov and I. P. Christov, “Time-Space Shaping of Light-Pulses by Fourier Optical-Processing,” J. Mod. Opt. 36(6), 725–731 (1989).
    [CrossRef]
  6. O. E. Martinez, “Grating and Prism Compressors in the Case of Finite Beam Size,” J. Opt. Soc. Am. B 3(7), 929–934 (1986).
    [CrossRef]
  7. M. B. Danailov, and I. P. Christov, Time-space shaping of light pulses by Fourier optical processing, (Taylor and Francis Ltd, 1989), pp. 725–731.
  8. J. W. Goodman, Introduction to Fourier optics (Roberts & Co, 2005).
  9. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
    [CrossRef]
  10. T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, “Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile,” Appl. Opt. 44(6), 1092–1098 (2005).
    [CrossRef] [PubMed]
  11. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19(11), 2795–2802 (2002).
    [CrossRef]
  12. D. Geissler, B. J. Pearson, and T. Weinacht, “Wave packet driven dissociation and concerted elimination in CH2I2,” J. Chem. Phys. 127(20), 204305 (2007).
    [CrossRef] [PubMed]
  13. B. J. Pearson, S. R. Nichols, and T. Weinacht, “Molecular fragmentation driven by ultrafast dynamic ionic resonances,” J. Chem. Phys. 127(13), 131101 (2007).
    [CrossRef] [PubMed]
  14. X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
    [CrossRef] [PubMed]
  15. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
    [CrossRef] [PubMed]
  16. A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences,” Phys. Rev. A 70(6), 063407 (2004).
    [CrossRef]
  17. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208 (2003).
    [CrossRef]
  18. D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
    [CrossRef]
  19. T. Polack, D. Oron, and Y. Silberberg, “Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse,” Chem. Phys. 318(1-2), 163–169 (2005).
    [CrossRef]
  20. R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
    [CrossRef]
  21. E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
    [CrossRef] [PubMed]
  22. D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60(2), 1287–1292 (1999).
    [CrossRef]
  23. C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75(6), 063401 (2007).
    [CrossRef]
  24. J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
    [CrossRef]
  25. P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54(4), R2559–R2562 (1996).
    [CrossRef] [PubMed]
  26. D. Meshulach, and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” (APS, 1999), pp. 1287–1292.
  27. S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
    [CrossRef]
  28. A. Bartelt, A. Lindinger, C. Lupulescu, Š. Vajda, and L. Wöste, “One parameter fs-pulse form control on NaK and Na 2 K,” (Royal Society of Chemistry, 2003), pp. 3610–3615.
  29. N. Dudovich, B. Dayan, Y. Silberberg, and S. M. Gallagher Faeder, “Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions,” Phys. Rev. Lett. 86(1), 47–50 (2001).
    [CrossRef] [PubMed]
  30. N. Dudovich, T. Polack, A. Pe'Er, and Y. Silberberg, “Simple route to strong-field coherent control,” (APS, 2005), p. 83002.
  31. J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
    [CrossRef]
  32. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” (AAAS, 1990), p. 1317.
  33. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
    [CrossRef] [PubMed]
  34. A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
    [CrossRef]
  35. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [CrossRef]
  36. G. N. Watson, A treatise on the theory of Bessel functions, (Cambridge Mathematical Library, 1944), pp. 505–507.

2009 (4)

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

M. A. Coughlan, M. Plewicki, and R. J. Levis, “Parametric spatio-temporal control of focusing laser pulses,” Opt. Express 17(18), 15808–15820 (2009).
[CrossRef] [PubMed]

2008 (3)

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77(4), 043416 (2008).
[CrossRef]

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
[CrossRef]

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
[CrossRef] [PubMed]

2007 (3)

D. Geissler, B. J. Pearson, and T. Weinacht, “Wave packet driven dissociation and concerted elimination in CH2I2,” J. Chem. Phys. 127(20), 204305 (2007).
[CrossRef] [PubMed]

B. J. Pearson, S. R. Nichols, and T. Weinacht, “Molecular fragmentation driven by ultrafast dynamic ionic resonances,” J. Chem. Phys. 127(13), 131101 (2007).
[CrossRef] [PubMed]

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75(6), 063401 (2007).
[CrossRef]

2006 (1)

2005 (3)

T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, “Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile,” Appl. Opt. 44(6), 1092–1098 (2005).
[CrossRef] [PubMed]

T. Polack, D. Oron, and Y. Silberberg, “Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse,” Chem. Phys. 318(1-2), 163–169 (2005).
[CrossRef]

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

2004 (4)

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences,” Phys. Rev. A 70(6), 063407 (2004).
[CrossRef]

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

2003 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208 (2003).
[CrossRef]

2002 (1)

2001 (2)

N. Dudovich, B. Dayan, Y. Silberberg, and S. M. Gallagher Faeder, “Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions,” Phys. Rev. Lett. 86(1), 47–50 (2001).
[CrossRef] [PubMed]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
[CrossRef]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

1999 (1)

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60(2), 1287–1292 (1999).
[CrossRef]

1998 (1)

M. A. Walker, P. Hansch, and L. D. Van Woerkom, “Intensity-resolved multiphoton ionization: Circumventing spatial averaging,” Phys. Rev. A 57(2), R701–R704 (1998).
[CrossRef]

1996 (2)

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54(4), R2559–R2562 (1996).
[CrossRef] [PubMed]

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

1989 (1)

M. B. Danailov and I. P. Christov, “Time-Space Shaping of Light-Pulses by Fourier Optical-Processing,” J. Mod. Opt. 36(6), 725–731 (1989).
[CrossRef]

1986 (1)

Akturk, S.

Baumert, T.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
[CrossRef]

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences,” Phys. Rev. A 70(6), 063407 (2004).
[CrossRef]

Bayer, T.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
[CrossRef]

Bowlan, P.

Brixner, T.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
[CrossRef]

Bucksbaum, P. H.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
[CrossRef] [PubMed]

Buckup, T.

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

Carroll, E. C.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
[CrossRef] [PubMed]

Chichkov, B.

Christov, I. P.

M. B. Danailov and I. P. Christov, “Time-Space Shaping of Light-Pulses by Fourier Optical-Processing,” J. Mod. Opt. 36(6), 725–731 (1989).
[CrossRef]

Cogdell, R. J.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
[CrossRef]

Corkum, P. B.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

Coughlan, M. A.

Danailov, M. B.

M. B. Danailov and I. P. Christov, “Time-Space Shaping of Light-Pulses by Fourier Optical-Processing,” J. Mod. Opt. 36(6), 725–731 (1989).
[CrossRef]

Dayan, B.

N. Dudovich, B. Dayan, Y. Silberberg, and S. M. Gallagher Faeder, “Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions,” Phys. Rev. Lett. 86(1), 47–50 (2001).
[CrossRef] [PubMed]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208 (2003).
[CrossRef]

N. Dudovich, B. Dayan, Y. Silberberg, and S. M. Gallagher Faeder, “Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions,” Phys. Rev. Lett. 86(1), 47–50 (2001).
[CrossRef] [PubMed]

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

Florean, A. C.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
[CrossRef] [PubMed]

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

Gabolde, P.

Gallagher Faeder, S. M.

N. Dudovich, B. Dayan, Y. Silberberg, and S. M. Gallagher Faeder, “Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions,” Phys. Rev. Lett. 86(1), 47–50 (2001).
[CrossRef] [PubMed]

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

Geissler, D.

D. Geissler, B. J. Pearson, and T. Weinacht, “Wave packet driven dissociation and concerted elimination in CH2I2,” J. Chem. Phys. 127(20), 204305 (2007).
[CrossRef] [PubMed]

Hansch, P.

M. A. Walker, P. Hansch, and L. D. Van Woerkom, “Intensity-resolved multiphoton ionization: Circumventing spatial averaging,” Phys. Rev. A 57(2), R701–R704 (1998).
[CrossRef]

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54(4), R2559–R2562 (1996).
[CrossRef] [PubMed]

Hauer, J.

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

Herek, J. L.

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
[CrossRef]

Itatani, J.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

Ivanov, M. Y.

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

Jafarpour, A.

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

Kannari, F.

Kapteyn, H. C.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

Kieffer, J. C.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

Koch, J.

Korte, F.

Lausten, R.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77(4), 043416 (2008).
[CrossRef]

Levesque, J.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

Levis, R. J.

M. A. Coughlan, M. Plewicki, and R. J. Levis, “Parametric spatio-temporal control of focusing laser pulses,” Opt. Express 17(18), 15808–15820 (2009).
[CrossRef] [PubMed]

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

Li, W.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

Lindinger, A.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

Lock, R.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

Markevitch, A. N.

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

Martinez, O. E.

McGresham, K.

Merli, A.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60(2), 1287–1292 (1999).
[CrossRef]

Motzkus, M.

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
[CrossRef]

Murnane, M. M.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

Nelson, K. A.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

Nichols, S. R.

B. J. Pearson, S. R. Nichols, and T. Weinacht, “Molecular fragmentation driven by ultrafast dynamic ionic resonances,” J. Chem. Phys. 127(13), 131101 (2007).
[CrossRef] [PubMed]

Niikura, H.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

Oron, D.

T. Polack, D. Oron, and Y. Silberberg, “Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse,” Chem. Phys. 318(1-2), 163–169 (2005).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208 (2003).
[CrossRef]

Pearson, B. J.

D. Geissler, B. J. Pearson, and T. Weinacht, “Wave packet driven dissociation and concerted elimination in CH2I2,” J. Chem. Phys. 127(20), 204305 (2007).
[CrossRef] [PubMed]

B. J. Pearson, S. R. Nichols, and T. Weinacht, “Molecular fragmentation driven by ultrafast dynamic ionic resonances,” J. Chem. Phys. 127(13), 131101 (2007).
[CrossRef] [PubMed]

Pépin, H.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

Plewicki, M.

M. A. Coughlan, M. Plewicki, and R. J. Levis, “Parametric spatio-temporal control of focusing laser pulses,” Opt. Express 17(18), 15808–15820 (2009).
[CrossRef] [PubMed]

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

Polack, T.

T. Polack, D. Oron, and Y. Silberberg, “Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse,” Chem. Phys. 318(1-2), 163–169 (2005).
[CrossRef]

Präkelt, A.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences,” Phys. Rev. A 70(6), 063407 (2004).
[CrossRef]

Romanov, D. A.

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

Sarpe-Tudoran, C.

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences,” Phys. Rev. A 70(6), 063407 (2004).
[CrossRef]

Savolainen, J.

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

Schlegel, H. B.

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

Selle, R.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
[CrossRef]

Sension, R. J.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
[CrossRef] [PubMed]

Serrat, C.

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

Shreenath, A.

Silberberg, Y.

T. Polack, D. Oron, and Y. Silberberg, “Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse,” Chem. Phys. 318(1-2), 163–169 (2005).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208 (2003).
[CrossRef]

N. Dudovich, B. Dayan, Y. Silberberg, and S. M. Gallagher Faeder, “Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions,” Phys. Rev. Lett. 86(1), 47–50 (2001).
[CrossRef] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60(2), 1287–1292 (1999).
[CrossRef]

Smith, S. M.

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

Stolow, A.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77(4), 043416 (2008).
[CrossRef]

Sussman, B. J.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77(4), 043416 (2008).
[CrossRef]

Tanabe, H.

Tanabe, T.

Teramura, Y.

Trallero-Herrero, C.

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75(6), 063401 (2007).
[CrossRef]

Trebino, R.

Van Woerkom, L. D.

M. A. Walker, P. Hansch, and L. D. Van Woerkom, “Intensity-resolved multiphoton ionization: Circumventing spatial averaging,” Phys. Rev. A 57(2), R701–R704 (1998).
[CrossRef]

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54(4), R2559–R2562 (1996).
[CrossRef] [PubMed]

Vetter, F.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

Villeneuve, D. M.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

Wagner, N.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

Walker, M. A.

M. A. Walker, P. Hansch, and L. D. Van Woerkom, “Intensity-resolved multiphoton ionization: Circumventing spatial averaging,” Phys. Rev. A 57(2), R701–R704 (1998).
[CrossRef]

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54(4), R2559–R2562 (1996).
[CrossRef] [PubMed]

Weber, S. M.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

Weinacht, T.

B. J. Pearson, S. R. Nichols, and T. Weinacht, “Molecular fragmentation driven by ultrafast dynamic ionic resonances,” J. Chem. Phys. 127(13), 131101 (2007).
[CrossRef] [PubMed]

D. Geissler, B. J. Pearson, and T. Weinacht, “Wave packet driven dissociation and concerted elimination in CH2I2,” J. Chem. Phys. 127(20), 204305 (2007).
[CrossRef] [PubMed]

Weinacht, T. C.

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75(6), 063401 (2007).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

White, J. L.

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
[CrossRef] [PubMed]

Wohlleben, W.

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
[CrossRef]

Wollenhaupt, M.

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
[CrossRef]

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences,” Phys. Rev. A 70(6), 063407 (2004).
[CrossRef]

Wöste, L.

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

Zeidler, D.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
[CrossRef]

Zhou, X.

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Chem. Phys. (2)

T. Polack, D. Oron, and Y. Silberberg, “Control and measurement of a non-resonant Raman wavepacket using a single ultrashort pulse,” Chem. Phys. 318(1-2), 163–169 (2005).
[CrossRef]

J. Savolainen, T. Buckup, J. Hauer, A. Jafarpour, C. Serrat, M. Motzkus, and J. L. Herek, “Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state,” Chem. Phys. 357(1-3), 181–187 (2009).
[CrossRef]

Eur. Phys. J. D (1)

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, “Application of parametric time and frequency domain shaping,” Eur. Phys. J. D , 33, 39–42 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32(1), 161–172 (1996).
[CrossRef]

J. Chem. Phys. (4)

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130(3), 034302 (2009).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region,” J. Chem. Phys. 118(20), 9208 (2003).
[CrossRef]

D. Geissler, B. J. Pearson, and T. Weinacht, “Wave packet driven dissociation and concerted elimination in CH2I2,” J. Chem. Phys. 127(20), 204305 (2007).
[CrossRef] [PubMed]

B. J. Pearson, S. R. Nichols, and T. Weinacht, “Molecular fragmentation driven by ultrafast dynamic ionic resonances,” J. Chem. Phys. 127(13), 131101 (2007).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

M. B. Danailov and I. P. Christov, “Time-Space Shaping of Light-Pulses by Fourier Optical-Processing,” J. Mod. Opt. 36(6), 725–731 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. At. Mol. Opt. Phys. (1)

R. Selle, T. Brixner, T. Bayer, M. Wollenhaupt, and T. Baumert, “Modelling of ultrafast coherent strong-field dynamics in potassium with neural networks,” J. Phys. At. Mol. Opt. Phys. 41(7), 074019 (2008).
[CrossRef]

J. Phys. Chem. A (1)

E. C. Carroll, J. L. White, A. C. Florean, P. H. Bucksbaum, and R. J. Sension, “Multiphoton control of the 1,3-cyclohexadiene ring-opening reaction in the presence of competing solvent reactions,” J. Phys. Chem. A 112(30), 6811–6822 (2008).
[CrossRef] [PubMed]

Nature (2)

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature 432(7019), 867–871 (2004).
[CrossRef] [PubMed]

J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, and M. Motzkus, “Quantum control of energy flow in light harvesting,” Nature 417, 533-535 (2001).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (8)

M. A. Walker, P. Hansch, and L. D. Van Woerkom, “Intensity-resolved multiphoton ionization: Circumventing spatial averaging,” Phys. Rev. A 57(2), R701–R704 (1998).
[CrossRef]

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77(4), 043416 (2008).
[CrossRef]

A. N. Markevitch, D. A. Romanov, S. M. Smith, H. B. Schlegel, M. Y. Ivanov, and R. J. Levis, “Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields,” Phys. Rev. A 69(1), 013401 (2004).
[CrossRef]

A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Phase control of a two-photon transition with shaped femtosecond laser-pulse sequences,” Phys. Rev. A 70(6), 063407 (2004).
[CrossRef]

D. Meshulach and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” Phys. Rev. A 60(2), 1287–1292 (1999).
[CrossRef]

C. Trallero-Herrero and T. C. Weinacht, “Transition from weak- to strong-field coherent control,” Phys. Rev. A 75(6), 063401 (2007).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70(2), 023415 (2004).
[CrossRef]

P. Hansch, M. A. Walker, and L. D. Van Woerkom, “Spatially dependent multiphoton multiple ionization,” Phys. Rev. A 54(4), R2559–R2562 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

N. Dudovich, B. Dayan, Y. Silberberg, and S. M. Gallagher Faeder, “Transform-Limited Pulses Are Not Optimal for Resonant Multiphoton Transitions,” Phys. Rev. Lett. 86(1), 47–50 (2001).
[CrossRef] [PubMed]

X. Zhou, R. Lock, N. Wagner, W. Li, H. C. Kapteyn, and M. M. Murnane, “Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields,” Phys. Rev. Lett. 102(7), 073902 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[CrossRef]

Other (7)

G. N. Watson, A treatise on the theory of Bessel functions, (Cambridge Mathematical Library, 1944), pp. 505–507.

M. B. Danailov, and I. P. Christov, Time-space shaping of light pulses by Fourier optical processing, (Taylor and Francis Ltd, 1989), pp. 725–731.

J. W. Goodman, Introduction to Fourier optics (Roberts & Co, 2005).

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” (AAAS, 1990), p. 1317.

N. Dudovich, T. Polack, A. Pe'Er, and Y. Silberberg, “Simple route to strong-field coherent control,” (APS, 2005), p. 83002.

A. Bartelt, A. Lindinger, C. Lupulescu, Š. Vajda, and L. Wöste, “One parameter fs-pulse form control on NaK and Na 2 K,” (Royal Society of Chemistry, 2003), pp. 3610–3615.

D. Meshulach, and Y. Silberberg, “Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses,” (APS, 1999), pp. 1287–1292.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup including an all reflective pulse shaper, lens and scanning SEA TADPOLE with an optical fiber.

Fig. 2
Fig. 2

Theoretical spectral phase and amplitude for a double pulse sequence. A) Spectral phase (green) and amplitude (blue). B) Temporal phase (green) and amplitude (blue) for a double pulse separated by 800fs.

Fig. 3
Fig. 3

Spatio-temporal and spatio-spectral scans of the double pulse performed with the 5cm focal length lens.

Fig. 4
Fig. 4

Theoretical spatio-temporal and spatio-spectral Wigner distributions in a focusing beam with phase mask corresponding to double-pulse structure. The figure shows the case for the focusing element placed at the distance 10f. Columns, from left to right, present distributions for longitudal positions 2 and 1: x Rayleigh range before focus, at the focus, and 2 and 1 x Rayleigh range after the focus, respectively.

Fig. 5
Fig. 5

(a) Experimentally recovered cross section of the focusing beam 2zr before the focus. (b) Spectral phase and amplitude for different transverse positions in part a.

Fig. 6
Fig. 6

(a) Spatio-spectral cross section of the focusing pulse at focal position z = f-zr from Fig. 5. (b) Spectral phase and amplitudes (normalized to the cut at zero microns) at different positions for a focusing beam at f-zr.

Fig. 7
Fig. 7

Spatio-temporal and spatio-spectral scan of the sine phase modulated pulse performed with the 5cm focal length lens.

Fig. 8
Fig. 8

Theoretical spatio-temporal and spatio-spectral intensity distributions in a focusing beam with sine wavefront modulation. The upper part of the figure shows the temporal distributions and the lower part shows the spectral distributions for the focusing element placed one focal length away from the grating. Columns, from left to right, present distributions for longitudal position in the Raleigh range before focus, at the focus and in the Raleigh range after the focus, respectively.

Fig. 9
Fig. 9

Experimentally recovered cross section of the focusing beam before the focus. b-d) Spectral phase and amplitude for different transverse positions of a.

Fig. 10
Fig. 10

(a) Cross section of the beam before the focus b-df) Spectral phase and amplitude (each is normalized to zero micrometers) cuts from the cross section in (a) at different transverse positions.

Tables (1)

Tables Icon

Table 1 Values employed in the simulation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A 1 ( x , Δ ω ) = A 0 exp ( Δ ω 2 Ω 2 ) exp ( x 2 s 2 ) ,
A 2 ( x , Δ ω ) = b A 1 ( b x , Δ ω ) exp ( i G Δ ω x ) ,
A 3 ( x , Δ ω ) = exp ( i k f ) i ​   2 π / k f + A 2 ( ξ , Δ ω ) exp ( i k ( x ξ ) 2 f ) d ξ .
A 4 ( x , Δ ω ) = A 3 ( x , Δ ω ) exp ( i k x 2 2 f ) .
A 5 ( x , Δ ω ) = exp ( i k f ) i ​   2 π / k f + A 4 ( ξ , Δ ω ) exp ( i k ( x ξ ) 2 f ) d ξ =         A 0 k s 2 2 b f exp ( Δ ω 2 Ω 2 s 2 4 b 2 f 2 ( k x f G Δ ω ) 2 + 2 i f k ) .
A 6 x ( x , ω ) = A 5 ( x , Δ ω ) exp ( i ( δ x x + β x x 2 ) ) , A 6 ω ( x , ω ) = A 5 ( x , Δ ω ) exp ( i ( δ ω ω + β ω ω 2 ) ) .
A 10 ( x , Δ ω ) = 1 / b A 9 ( x / b , Δ ω ) exp ( i G Δ ω x / b ) .
A 10 ω ( x , Δ ω ) = A 0 exp ( Δ ω 2 Ω 2 ) exp ( x 2 s 2 ) exp ( i ( δ ω Δ ω + β ω Δ ω 2 ) ) exp ( 4 i k f ) .
A 10 x ( x , Δ ω ) = A 0 k 2 s 2 k 2 s 2 4 i b 2 f 2 β x exp ( Δ ω 2 Ω 2 s 2 ( k 2 x + b f k δ x + 2 b f 2 G β x Δ ω ) 2 k 4 s 4 16 b 4 f 4 β x 2 )           exp ( i f k 4 s 4 16 b 4 f 4 β x 2 ( G k 3 s 4 δ x Δ ω + f G 2 k 2 s 4 β x Δ ω 2 +           16 b 3 f 3 G x β x 2 Δ ω + 8 b 3 f 2 k x β x δ x 4 b 2 f k 2 x 2 β x +           64 b 4 f 4 k β x 2 4 b 4 f 3 β x δ x 2 + 4 k 5 s 4 ) ) .
exp ( i π sin ( α x ) ) = n = J n ( π ) exp ( i n α x ) .

Metrics