Abstract

We demonstrate an all-silicon photodetector working at telecom wavelength. The device is a simple metal-semiconductor-metal detector fabricated on silicon-on-insulator. A two-dimensional photonic crystal nanocavity (Q = 60,000) is used to increase the response that arises from the linear and two-photon absorption of silicon. The responsivity of the detector is about 20 mA/W and its bandwidth is larger than 1 GHz.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola
Opt. Express 21(23) 28072-28082 (2013)

Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band

Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir, and Uriel Levy
Opt. Express 20(27) 28594-28602 (2012)

High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide

Laurent Vivien, Mathieu Rouvière, Jean-Marc Fédéli, Delphine Marris-Morini, Jean-François Damlencourt, Juliette Mangeney, Paul Crozat, Loubna El Melhaoui, Eric Cassan, Xavier Le Roux, Daniel Pascal, and Suzanne Laval
Opt. Express 15(15) 9843-9848 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
    [Crossref] [PubMed]
  2. M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
    [Crossref]
  3. M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
    [Crossref]
  4. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
    [Crossref] [PubMed]
  5. L. Vivien, M. Rouvière, J. M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
    [Crossref] [PubMed]
  6. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
    [Crossref] [PubMed]
  7. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
    [Crossref]
  8. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
    [Crossref]
  9. Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006).
    [Crossref]
  10. J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
    [Crossref] [PubMed]
  11. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
    [Crossref]
  12. J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
    [Crossref]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  14. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
    [Crossref]
  15. Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
    [Crossref]
  16. T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
    [Crossref]
  17. A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
    [Crossref] [PubMed]
  18. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
    [Crossref] [PubMed]
  19. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
    [Crossref]
  20. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [Crossref]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
    [Crossref]
  22. X. Checoury, S. Enoch, C. Lopez, and A. Blanco, “Stacking patterns in self-assembly opal photonic crystals,” Appl. Phys. Lett. 90(16), 161131 (2007).
    [Crossref]
  23. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [Crossref]
  24. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [Crossref] [PubMed]
  25. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
    [Crossref]

2010 (5)

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[Crossref] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

2009 (2)

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[Crossref]

2008 (2)

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
[Crossref] [PubMed]

2007 (5)

2006 (4)

Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006).
[Crossref]

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

2005 (2)

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[Crossref] [PubMed]

2004 (1)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

2002 (2)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Ahn, D.

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Asano, T.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Barclay, P.

Beals, M.

Bensahel, D.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Berroth, M.

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Blanco, A.

X. Checoury, S. Enoch, C. Lopez, and A. Blanco, “Stacking patterns in self-assembly opal photonic crystals,” Appl. Phys. Lett. 90(16), 161131 (2007).
[Crossref]

Boucaud, P.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Bradley, J. D. B.

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

Bravo-Abad, J.

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[Crossref]

Campidelli, Y.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Cassan, E.

Checoury, X.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

X. Checoury, S. Enoch, C. Lopez, and A. Blanco, “Stacking patterns in self-assembly opal photonic crystals,” Appl. Phys. Lett. 90(16), 161131 (2007).
[Crossref]

Chen, J.

Chetrit, Y.

Cheung, W. Y.

Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006).
[Crossref]

Cho, C. W.

Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006).
[Crossref]

Cohen, R.

Crozat, P.

Damlencourt, J. F.

David, S.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

De La Rue, R. M.

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Doylend, J. K.

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Edamatsu, K.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

El Kurdi, M.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

El Melhaoui, L.

Enoch, S.

X. Checoury, S. Enoch, C. Lopez, and A. Blanco, “Stacking patterns in self-assembly opal photonic crystals,” Appl. Phys. Lett. 90(16), 161131 (2007).
[Crossref]

Fédéli, J. M.

Fishman, G.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Fukuda, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Giziewicz, W.

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Han, Z.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[Crossref]

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Hong, C. Y.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Ippen, E. P.

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[Crossref]

Itabashi, S.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Jessop, P. E.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Johnson, N. P.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Jutzi, M.

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Kärtner, F. X.

Kasper, E.

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Kawasaki, K.

Kermarrec, O.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Khoe, G.-D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Kimerling, L. C.

Knights, A. P.

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[Crossref] [PubMed]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Kosaka, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Kuramochi, E.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Laval, S.

Le Roux, X.

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Liu, J.

Liu, Y.

Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006).
[Crossref]

Lopez, C.

X. Checoury, S. Enoch, C. Lopez, and A. Blanco, “Stacking patterns in self-assembly opal photonic crystals,” Appl. Phys. Lett. 90(16), 161131 (2007).
[Crossref]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Mangeney, J.

Marris-Morini, D.

Matsuda, N.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Michel, J.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Mitsumori, Y.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Morse, M. M.

Néel, D.

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

Noda, S.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[Crossref]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Notomi, M.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Oehme, M.

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Oei, Y.-S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Painter, O.

Paniccia, M. J.

Pascal, D.

Patriarche, G.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

Roh, Y.-G.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

Rouvière, M.

Rubin, D.

Sagnes, I.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Saint-Girons, G.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Sarid, G.

Sato, A.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Sauvage, S.

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Shimizu, R.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Shinya, A.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Soljacic, M.

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[Crossref]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Sorel, M.

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Srinivasan, K.

Sumikura, H.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[Crossref]

Tanabe, T.

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Tanaka, Y.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[Crossref]

Taniyama, H.

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

Tsang, H. K.

Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006).
[Crossref]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

Tsuchizawa, T.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Vivien, L.

Watanabe, T.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Werner, J.

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Wöhl, G.

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Yamada, K.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Yin, T.

Yokoyama, H.

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

Zain, A. R.

Appl. Phys. Lett. (10)

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323 (2002).
[Crossref]

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[Crossref]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[Crossref]

T. Tanabe, H. Sumikura, H. Taniyama, A. Shinya, and M. Notomi, “All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip,” Appl. Phys. Lett. 96(10), 101103 (2010).
[Crossref]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

X. Checoury, S. Enoch, C. Lopez, and A. Blanco, “Stacking patterns in self-assembly opal photonic crystals,” Appl. Phys. Lett. 90(16), 161131 (2007).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[Crossref]

N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, “All-optical phase modulations in a silicon wire waveguide at ultralow light levels,” Appl. Phys. Lett. 95(17), 171110 (2009).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Liu, C. W. Cho, W. Y. Cheung, and H. K. Tsang, “In-line channel power monitor based on helium ion implantation in Silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett. 18(17), 1882–1884 (2006).
[Crossref]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-Compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[Crossref]

J. Appl. Phys. (1)

M. El kurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, and G. Patriarche, “Silicon-on-insulator waveguide photodetector with Ge/Si self-assembled islands,” J. Appl. Phys. 92(4), 1858 (2002).
[Crossref]

Nature (2)

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Z. Han, X. Checoury, D. Néel, S. David, M. El Kurdi, and P. Boucaud, “Optimized design for 2 × 106 ultra-high Q siliconphotonic crystal cavities,” Opt. Commun. 283(21), 4387–4391 (2010).
[Crossref]

Opt. Express (7)

A. R. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
[Crossref] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18(15), 15859–15869 (2010).
[Crossref] [PubMed]

J. K. Doylend, P. E. Jessop, and A. P. Knights, “Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection,” Opt. Express 18(14), 14671–14678 (2010).
[Crossref] [PubMed]

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

L. Vivien, M. Rouvière, J. M. Fédéli, D. Marris-Morini, J. F. Damlencourt, J. Mangeney, P. Crozat, L. El Melhaoui, E. Cassan, X. Le Roux, D. Pascal, and S. Laval, “High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15(15), 9843–9848 (2007).
[Crossref] [PubMed]

T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate,” Opt. Express 15(21), 13965–13971 (2007).
[Crossref] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[Crossref] [PubMed]

Thin Solid Films (1)

M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, “High-speed germanium photodiodes monolithically integrated on silicon with MBE,” Thin Solid Films 508(1-2), 393–395 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic description of the detector (b) SEM view of the cavity and electrodes (c) Simulated Q for different electrode geometries in the suspended cavity case, in units of 100 000.

Fig. 2
Fig. 2

Transmission spectra of the cavity at different input powers (Q = 58,000).

Fig. 3
Fig. 3

(a) Photocurrent dependence vs. wavelength. Optical input power is 70 µW and bias is 10V (b) Photocurrent at optical resonance as a function of input power at 10 V and 3 V biases. (c) Resonant photocurrent depending on the bias at a 100 µW input power.

Fig. 4
Fig. 4

(a) Cavity energy vs. optical input power. The dependence is sub-linear: the black dashed line shows the tangent at the origin (b) Photocurrent as a function of cavity energy, at a 3 V bias. The circles are the experimental values. The dashed line is the fitted TPA current, the dotted-dashed line is the linear current and the solid line is the total fitted current.

Fig. 5
Fig. 5

(a) Input signal (dotted line) and detector signal (solid line) for f = 600 MHz. The applied bias is 7 V and the input power is 30 µW (b) Normalized response of the detector vs. modulation frequency. The −3 dB cutoff occurs at 1.1 GHz (7 V bias and 30 µW input power).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V TPA = ( n 2 E 2 d r ) 2 Si n 4 E 4 d r = 0.67  (µm) 3 .
I ph = q g ω 0 [ α c n U + β 2 ( c n ) 2 U 2 V TPA ] .
U = 2 P out Q T 0 ω 0 .

Metrics