Abstract

Experimental evidence of phase resonances in a dual-period reflection structure comprising three subwavelength grooves in each period is provided in the millimeter-wave regime. We have analyzed and measured the response of these structures and show that phase resonances are characterized by a minimum in the reflected response, as predicted by numerical calculations. It is also shown that under oblique incidence these structures exhibit additional phase resonances not present for normal illumination because of the potentially permitted odd field distribution. A satisfactory agreement between the experimental and numerical reflectance curves is obtained. These results confirm the recent theoretical predictions of phase resonances in reflection gratings in the millimeter-wave regime, and encourage research in this subject due to the multiple potential applications, such as frequency selective surfaces, backscattering reduction and complex-surface-wave-based sensing. In addition, it is underlined here that the response becomes much more complex than the mere infinite analysis when one considers finite periodic structures as in the real experiment.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Agranovich, and D. L. Mills, Surface polaritons, (North Holland, Amsterdam, 1982).
  2. A. Hessel, and A. A. Oliner, "A new theory of Wood’s anomalies on optical gratings," Appl. Opt. 4, 1275-1297 (1965).
    [CrossRef]
  3. M. C. Hutley, "Anomalies and the electromagnetic theory of grating efficiencies," chapter 6 in Diffraction gratings, (Academic Press, London, 1982).
  4. J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta (Lond.) 26, 69-89 (1977).
    [CrossRef]
  5. A. Wirgin, and A. A. Maradudin, "Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light," Phys. Rev. B 31, 5573-5576 (1985).
    [CrossRef]
  6. T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
    [CrossRef]
  7. D. C. Skigin, and R. A. Depine, "Surface shape resonances and surface plasmon polariton excitations in bottle shaped metallic gratings," Phys. Rev. E 63, 046608 (2001).
    [CrossRef]
  8. A. Zuniga-Segundo, and O. Mata-Mendez, "Interaction of S-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity," Phys. Rev. B 46, 536-539 (1992).
    [CrossRef]
  9. A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, "Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface," Opt. Commun. 135, 352-360 (1997).
    [CrossRef]
  10. O. Mata-Mendez, and J. Sumaya-Martinez, "Scattering of TE-polarized waves by a finite grating: giant resonant enhancement of the electric field within the grooves," J. Opt. Soc. Am. A 14, 2203-2211 (1997).
    [CrossRef]
  11. D. C. Skigin, and R. A. Depine, "Resonant enhancement of the field within a single cavity in a ground plane: comparison for different rectangular shapes," Phys. Rev. E 59, 3661-3668 (1999).
    [CrossRef]
  12. R. A. Depine, and D. C. Skigin, "Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings," Phys. Rev. E 61, 4479-4490 (2000).
    [CrossRef]
  13. V. V. Veremey, and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antenn. Propag. 46, 494-501 (1998).
    [CrossRef]
  14. D. C. Skigin, V. V. Veremey, and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antenn. Propag. 47, 376-383 (1999).
    [CrossRef]
  15. A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
    [CrossRef]
  16. S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
    [CrossRef]
  17. D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A, Pure Appl. Opt. 5, S129-S135 (2003).
    [CrossRef]
  18. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, "Controlling strong electromagnetic fields at subwavelength scales," Phys. Rev. Lett. 97, 036405 (2006).
    [CrossRef] [PubMed]
  19. A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, "Generation and control of hot spots on commensurate metallic gratings," Opt. Express 16, 19127-19135 (2008).
    [CrossRef]
  20. D. Crouse, E. Jacquay, A. Maikal, and A. Hibbins, "Light circulation and weaving in periodically patterned structures," Phys. Rev. B 77, 195437 (2008).
  21. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
    [CrossRef] [PubMed]
  22. Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. E 76, 085413 (2007).
    [CrossRef]
  23. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107 (2009).
    [CrossRef]
  24. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
    [CrossRef]
  25. A. Barbara, S. Collin, C. Sauvan, J. Le Perchec, C. Maxime, J.-L. Pelouard, and P. Quémerais, "Plasmon dispersion diagram and localization effects in a three-cavity commensurate grating," Opt. Express 18, 14913-14925 (2010).
    [CrossRef] [PubMed]
  26. R. Ulrich, "Modes of propagation on an open periodic waveguide for the far infrared," Proc. Symposium Opt. Acoust. Microelectronics, New York, (1974).
  27. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  28. C. Dahl, P. Goy, and J. P. Kotthaus, "Magneto-optical Millimeter-Wave Spectroscopy" in Millimeter and Submillimeter Wave Spectroscopy of Solids (Topics in Applied Physics, Vol. 74), Springer-Verlag Berlin Heidelberg, Ed.: G. Gruener, 221-280 (1998).
    [CrossRef]
  29. M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B 79, 195107 (2009).
  30. J. Le Perchec, A. Barbara, P. Quémerais, and T. López-Ríos, "Role of commensurate arrangements in the optical response of metallic gratings," ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.
  31. D. C. Skigin, and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
    [CrossRef]
  32. C. I. Valencia, and D. C. Skigin, "Anomalous reflection in a metallic plate with subwavelength grooves of circular cross section," Appl. Opt. 48, 5863-5870 (2009).
    [CrossRef] [PubMed]

2010

2009

C. I. Valencia, and D. C. Skigin, "Anomalous reflection in a metallic plate with subwavelength grooves of circular cross section," Appl. Opt. 48, 5863-5870 (2009).
[CrossRef] [PubMed]

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B 79, 195107 (2009).

2008

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, "Generation and control of hot spots on commensurate metallic gratings," Opt. Express 16, 19127-19135 (2008).
[CrossRef]

D. Crouse, E. Jacquay, A. Maikal, and A. Hibbins, "Light circulation and weaving in periodically patterned structures," Phys. Rev. B 77, 195437 (2008).

2007

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. E 76, 085413 (2007).
[CrossRef]

2006

D. C. Skigin, and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, "Controlling strong electromagnetic fields at subwavelength scales," Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

2004

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

2003

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A, Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

2002

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

2001

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

D. C. Skigin, and R. A. Depine, "Surface shape resonances and surface plasmon polariton excitations in bottle shaped metallic gratings," Phys. Rev. E 63, 046608 (2001).
[CrossRef]

2000

R. A. Depine, and D. C. Skigin, "Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings," Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

1999

D. C. Skigin, and R. A. Depine, "Resonant enhancement of the field within a single cavity in a ground plane: comparison for different rectangular shapes," Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antenn. Propag. 47, 376-383 (1999).
[CrossRef]

1998

V. V. Veremey, and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antenn. Propag. 46, 494-501 (1998).
[CrossRef]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

1997

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, "Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface," Opt. Commun. 135, 352-360 (1997).
[CrossRef]

O. Mata-Mendez, and J. Sumaya-Martinez, "Scattering of TE-polarized waves by a finite grating: giant resonant enhancement of the electric field within the grooves," J. Opt. Soc. Am. A 14, 2203-2211 (1997).
[CrossRef]

1992

A. Zuniga-Segundo, and O. Mata-Mendez, "Interaction of S-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity," Phys. Rev. B 46, 536-539 (1992).
[CrossRef]

1985

A. Wirgin, and A. A. Maradudin, "Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light," Phys. Rev. B 31, 5573-5576 (1985).
[CrossRef]

1977

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta (Lond.) 26, 69-89 (1977).
[CrossRef]

1965

Andrewartha, J. R.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta (Lond.) 26, 69-89 (1977).
[CrossRef]

Barbara, A.

Beruete, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B 79, 195107 (2009).

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Campillo, I.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B 79, 195107 (2009).

Collin, S.

Crouse, D.

D. Crouse, E. Jacquay, A. Maikal, and A. Hibbins, "Light circulation and weaving in periodically patterned structures," Phys. Rev. B 77, 195437 (2008).

Depine, R. A.

D. C. Skigin, and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin, and R. A. Depine, "Surface shape resonances and surface plasmon polariton excitations in bottle shaped metallic gratings," Phys. Rev. E 63, 046608 (2001).
[CrossRef]

R. A. Depine, and D. C. Skigin, "Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings," Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

D. C. Skigin, and R. A. Depine, "Resonant enhancement of the field within a single cavity in a ground plane: comparison for different rectangular shapes," Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

Fantino, A. N.

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A, Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

Fox, J. R.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta (Lond.) 26, 69-89 (1977).
[CrossRef]

García-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Grosz, S. I.

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A, Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

Hessel, A.

Hibbins, A.

D. Crouse, E. Jacquay, A. Maikal, and A. Hibbins, "Light circulation and weaving in periodically patterned structures," Phys. Rev. B 77, 195437 (2008).

Hibbins, A. P.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

Hooper, I. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

Jacquay, E.

D. Crouse, E. Jacquay, A. Maikal, and A. Hibbins, "Light circulation and weaving in periodically patterned structures," Phys. Rev. B 77, 195437 (2008).

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

Le Perchec, J.

Leskova, T. A.

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, "Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface," Opt. Commun. 135, 352-360 (1997).
[CrossRef]

Lockyear, M. J.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

López-Rios, T.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

López-Ríos, T.

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, "Generation and control of hot spots on commensurate metallic gratings," Opt. Express 16, 19127-19135 (2008).
[CrossRef]

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, "Controlling strong electromagnetic fields at subwavelength scales," Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

Ma, Y. G.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. E 76, 085413 (2007).
[CrossRef]

Maikal, A.

D. Crouse, E. Jacquay, A. Maikal, and A. Hibbins, "Light circulation and weaving in periodically patterned structures," Phys. Rev. B 77, 195437 (2008).

Maradudin, A. A.

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, "Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface," Opt. Commun. 135, 352-360 (1997).
[CrossRef]

A. Wirgin, and A. A. Maradudin, "Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light," Phys. Rev. B 31, 5573-5576 (1985).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Mata-Mendez, O.

O. Mata-Mendez, and J. Sumaya-Martinez, "Scattering of TE-polarized waves by a finite grating: giant resonant enhancement of the electric field within the grooves," J. Opt. Soc. Am. A 14, 2203-2211 (1997).
[CrossRef]

A. Zuniga-Segundo, and O. Mata-Mendez, "Interaction of S-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity," Phys. Rev. B 46, 536-539 (1992).
[CrossRef]

Maxime, C.

Mendoza, D.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Mittra, R.

D. C. Skigin, V. V. Veremey, and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antenn. Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey, and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antenn. Propag. 46, 494-501 (1998).
[CrossRef]

Navarro-Cía, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B 79, 195107 (2009).

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Oliner, A. A.

Ong, C. K.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. E 76, 085413 (2007).
[CrossRef]

Pannetier, B.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Pelouard, J.-L.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Quémerais, P.

Rao, X. S.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. E 76, 085413 (2007).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

Sánchez-Dehesa, J.

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Sauvan, C.

Shchegrov, A. V.

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, "Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface," Opt. Commun. 135, 352-360 (1997).
[CrossRef]

Skigin, D. C.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

C. I. Valencia, and D. C. Skigin, "Anomalous reflection in a metallic plate with subwavelength grooves of circular cross section," Appl. Opt. 48, 5863-5870 (2009).
[CrossRef] [PubMed]

D. C. Skigin, and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A, Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

D. C. Skigin, and R. A. Depine, "Surface shape resonances and surface plasmon polariton excitations in bottle shaped metallic gratings," Phys. Rev. E 63, 046608 (2001).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

R. A. Depine, and D. C. Skigin, "Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings," Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antenn. Propag. 47, 376-383 (1999).
[CrossRef]

D. C. Skigin, and R. A. Depine, "Resonant enhancement of the field within a single cavity in a ground plane: comparison for different rectangular shapes," Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

Sorolla, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B 79, 195107 (2009).

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Sumaya-Martinez, J.

Valencia, C. I.

Veremey, V. V.

D. C. Skigin, V. V. Veremey, and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antenn. Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey, and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antenn. Propag. 46, 494-501 (1998).
[CrossRef]

Wilson, I. J.

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta (Lond.) 26, 69-89 (1977).
[CrossRef]

Wirgin, A.

A. Wirgin, and A. A. Maradudin, "Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light," Phys. Rev. B 31, 5573-5576 (1985).
[CrossRef]

Zhang, G. F.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. E 76, 085413 (2007).
[CrossRef]

Zuniga-Segundo, A.

A. Zuniga-Segundo, and O. Mata-Mendez, "Interaction of S-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity," Phys. Rev. B 46, 536-539 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Excitation of remarkably nondispersive surface plasmons on a nondiffracting dual-pitch metal grating," Appl. Phys. Lett. 80, 2410-2412 (2002).
[CrossRef]

IEEE Trans. Antenn. Propag.

V. V. Veremey, and R. Mittra, "Scattering from structures formed by resonant elements," IEEE Trans. Antenn. Propag. 46, 494-501 (1998).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antenn. Propag. 47, 376-383 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

D. C. Skigin, A. N. Fantino, and S. I. Grosz, "Phase resonances in compound metallic gratings," J. Opt. A, Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Acta (Lond.)

J. R. Andrewartha, J. R. Fox, and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta (Lond.) 26, 69-89 (1977).
[CrossRef]

Opt. Commun.

A. A. Maradudin, A. V. Shchegrov, and T. A. Leskova, "Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface," Opt. Commun. 135, 352-360 (1997).
[CrossRef]

Opt. Express

Phys. Rev. B

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, "Negative refraction through an extraordinary transmission left-handed metamaterial slab," Phys. Rev. B 79, 195107 (2009).

D. Crouse, E. Jacquay, A. Maikal, and A. Hibbins, "Light circulation and weaving in periodically patterned structures," Phys. Rev. B 77, 195437 (2008).

A. Zuniga-Segundo, and O. Mata-Mendez, "Interaction of S-polarized beams with infinitely conducting grooves: enhanced fields and dips in the reflectivity," Phys. Rev. B 46, 536-539 (1992).
[CrossRef]

A. Wirgin, and A. A. Maradudin, "Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light," Phys. Rev. B 31, 5573-5576 (1985).
[CrossRef]

Phys. Rev. E

D. C. Skigin, and R. A. Depine, "Surface shape resonances and surface plasmon polariton excitations in bottle shaped metallic gratings," Phys. Rev. E 63, 046608 (2001).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64, 016605 (2001).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65, 056619 (2002).
[CrossRef]

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. E 76, 085413 (2007).
[CrossRef]

D. C. Skigin, and R. A. Depine, "Resonant enhancement of the field within a single cavity in a ground plane: comparison for different rectangular shapes," Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

R. A. Depine, and D. C. Skigin, "Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings," Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

D. C. Skigin, and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006).
[CrossRef]

Phys. Rev. Lett.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, "Controlling strong electromagnetic fields at subwavelength scales," Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef] [PubMed]

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, "Microwave transmission of a compound metal grating," Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

T. López-Rios, D. Mendoza, F. J. García-Vidal, J. Sánchez-Dehesa, and B. Pannetier, "Surface shape resonances in lamellar metallic gratings," Phys. Rev. Lett. 81, 665-668 (1998).
[CrossRef]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Other

C. Dahl, P. Goy, and J. P. Kotthaus, "Magneto-optical Millimeter-Wave Spectroscopy" in Millimeter and Submillimeter Wave Spectroscopy of Solids (Topics in Applied Physics, Vol. 74), Springer-Verlag Berlin Heidelberg, Ed.: G. Gruener, 221-280 (1998).
[CrossRef]

R. Ulrich, "Modes of propagation on an open periodic waveguide for the far infrared," Proc. Symposium Opt. Acoust. Microelectronics, New York, (1974).

V. M. Agranovich, and D. L. Mills, Surface polaritons, (North Holland, Amsterdam, 1982).

J. Le Perchec, A. Barbara, P. Quémerais, and T. López-Ríos, "Role of commensurate arrangements in the optical response of metallic gratings," ArXiv 0706.3843 (2007), http://arxiv.org/abs/0706.3843.

M. C. Hutley, "Anomalies and the electromagnetic theory of grating efficiencies," chapter 6 in Diffraction gratings, (Academic Press, London, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fabricated sample and scheme of the compound reflection grating with subwavelength rectangular grooves.

Fig. 2
Fig. 2

Comparison of the simulated reflection coefficient as a function of the frequency calculated for an infinitely periodic structure and for a finite structure comprising 17 groups of three grooves for normal incidence. The parameters of the structure are: c = a = 0.4 mm, h = 1.01 mm, d = 2.8 mm.

Fig. 3
Fig. 3

Comparison of the measured and the simulated reflection coefficient as a function of the frequency. The simulated results correspond to a finite structure comprising 17 groups of three grooves each, and the parameters of the structure are: c = a = 0.4 mm, h = 1.01 mm, d = 2.8 mm. (a) Normal incidence; (b) oblique incidence (5°).

Fig. 4
Fig. 4

Magnetic field (phase and modulus) at the bottom of the grooves for two resonant situations: (a) Phase and (b) modulus for θ0 = 0° and f = 59.67 GHz; (c) phase and (d) modulus for θ0 = 5° and f = 59.78 GHz.

Metrics