Abstract

Two-tone 1064 nm fiber amplifiers having both cold (16°C) and pump induced temperature zones co-seeded with narrow linewidth 1064 nm and broad linewidth 1040 nm photons have been shown to have a power enhancement factor between 1.6 and 1.8 relative to the optimum single-tone 1064 nm amplifier while maintaining an efficiency of 65% or greater. The output power and efficiency of 1064 nm narrow linewidth two-tone amplifiers is dependent on the length of the gain fiber, the narrow to broad linewidth seed ratio, the wavelength of the broad linewidth seed and the temperature of the gain fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef]
  2. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
    [CrossRef]
  3. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  4. A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers,” in Proceedings of the 17th ECOC, 1991, 25–28.
  5. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  6. M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
    [CrossRef]
  7. B. Shiner, “Recent technical and marketing developments in high power fiber lasers,” in Tech Focus: Fiber Lasers and Amplifiers: Concepts to Applications, CLEO Europe, Munich, Germany, 2009.
  8. T. Bronder, I. Dajani, C. Zeringue, and T. Shay, “Multi-tone driven high-power narrow linewidth rare earth doped fiber amplifier,” US Patent 7764720.
  9. I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
    [CrossRef] [PubMed]
  10. I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
    [CrossRef]
  11. C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
    [CrossRef]

2010 (1)

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

2009 (1)

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

2008 (2)

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

2007 (3)

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

2000 (1)

Alam, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Andrejco, M. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Bronder, T. J.

Chen, X.

Crowley, A. M.

Dajani, I.

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

Demeritt, J. A.

DiGiovanni, D. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Fini, J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Gavrielides, A.

Goldberg, L.

Gray, S.

Headley, C.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Henry, L.

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Kliner, D. A.

Koplow, J. P.

Li, M. J.

Liu, A.

Lobad, A.

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

Lu, C.

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

Machewirth, D. P.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

O'Connor, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Robin, C.

Ruffin, A. B.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Samson, B.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Shay, T.

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

Shay, T. M.

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

Tankala, K.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Vergien, C.

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

Walton, D. T.

Wang, J.

Wang, Q.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Zenteno, L. A.

Zeringue, C.

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

I. Dajani, C. Zeringue, and T. M. Shay, “Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (3)

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O'Connor, and M. Alam, “Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

C. Lu, I. Dajani, C. Zeringue, C. Vergien, L. Henry, A. Lobad, and T. Shay, “SBS suppression through seeding with narrow linewidth and broadband signals: experimental results,” Proc. SPIE 7580, 75802L (2010).
[CrossRef]

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Other (3)

B. Shiner, “Recent technical and marketing developments in high power fiber lasers,” in Tech Focus: Fiber Lasers and Amplifiers: Concepts to Applications, CLEO Europe, Munich, Germany, 2009.

T. Bronder, I. Dajani, C. Zeringue, and T. Shay, “Multi-tone driven high-power narrow linewidth rare earth doped fiber amplifier,” US Patent 7764720.

A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers,” in Proceedings of the 17th ECOC, 1991, 25–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ideal intensity profiles in a 7 m gain fiber showing a complete power transfer from the 1040 nm to the 1064 nm signal by the end of the gain fiber.

Fig. 2
Fig. 2

Diagram of two-tone experimental set-up.

Fig. 3
Fig. 3

Output end of two-tone amplifier showing measurement of the following in the output of the amplifier: unabsorbed pump, 1040 nm and 1064 nm. A dichroic (M1) was used to remove the unabsorbed pump from the beam and a spike filter (M2) was used to separate the 1040 nm from the 1064 nm.

Fig. 4
Fig. 4

a-d. Power profile for 1040 and 1064 nm as a function of gain fiber length for a seed level of 1040 nm of 1.4 W and (a)/(b) a low 1064 nm seed level of 42.5 mW and (c)/(d) a high 1064 nm seed level of 785 mW.

Fig. 5
Fig. 5

a and b. Power enhancement and efficiency of two-tone amplifiers for constant 1064 nm and variable 1040 nm seeds: (a) 7 m fiber amplifier co-seeded with 0.485 W of 1064 nm along with up to 2.45 W of 1040 nm, (b) 9 m fiber amplifier co-seeded with 0.065W of 1064 nm along with up to 2.45 W of 1040 nm.

Fig. 6
Fig. 6

a b. Experimental setup utilized for comparing the effect of having: (a) the entire gain fiber cold versus (b) having the gain fiber in two temperature zones.

Tables (3)

Tables Icon

Table 1 Best two-tone 1064 nm amplifier in terms of power as a function of efficiency and length of gain fiber

Tables Icon

Table 2 Enhancement of two-tone seeding relative to single-tone seeding at 1064 nm for the optimum 70% efficient amplifier at each length.

Tables Icon

Table 3 Comparison of one versus two temperature regions for two-tone seeding in a 7 m gain fiber

Metrics