Abstract

High power and good beam quality of two-dimensional bottom-emitting vertical-cavity surface-emitting laser array with GaAs microlens on the substrate is achieved. Uniform and matched convex microlens is directly fabricated by one-step diffusion-limited wet-etching techniques on the emitting windows. The maximum output power is above 1W at continuous-wave operation at room temperature, and the far-field beam divergence is below 6.6°at a current of 4A. These properties between microlens-integrated and conventional device at different operating current are demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
    [CrossRef]
  2. M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
    [CrossRef]
  3. J. Cui, Y. Ning, Y. Zhang, P. Kong, G. Liu, X. Zhang, Z. Wang, T. Li, Y. Sun, and L. Wang, “Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution,” Appl. Opt. 48(18), 3317–3321 (2009).
    [CrossRef] [PubMed]
  4. J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
    [CrossRef]
  5. J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
    [CrossRef]
  6. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
    [CrossRef]
  7. F. Qi and N. K. A. Bryan, “Investigation of hybrid microlens integration with vertical-cavity surface-emitting lasers for free-space optical links,” Opt. Express 10(9), 413–418 (2002).
    [PubMed]
  8. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
    [CrossRef]
  9. G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
    [CrossRef]
  10. Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
    [CrossRef]
  11. S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
    [CrossRef]

2009

2008

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

2006

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

2002

2000

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

1999

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

1997

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

1994

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

1988

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Bryan, N. K. A.

Choe, J.-S.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Coldren, L. A.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Cui, J.

D’Asaro, L. A.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Dennis, C. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Ebeling, K. J.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Ghosh, C. L.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Grabherr, M.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Hersee, S. D.

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Hu, E. L.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Iga, K.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Jager, R.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Jeon, H.

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Khalfin, V.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Kim, J.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Kim, Y.-S.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Kinoshita, S.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Kong, P.

Koyama, F.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Lee, S.

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Li, T.

Liau, Z. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Liu, G.

Martin, U.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Michalzik, R.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Miglo, A.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Miller, M.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Mull, D. E.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Ning, Y.

Park, S.-H.

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Peake, G. M.

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Pradhan, P.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Qi, F.

Robinson, G. D.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Roh, Y.-G.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Seurin, J.-F.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Strzelecka, E. M.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Sun, S. Z.

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Sun, Y.

Unold, H. J.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Waarts, R. G.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Wang, L.

Wang, Z.

Williamson, R. C.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Woo, J. C.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Wynn, J. D.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Xu, G.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Zhang, X.

Zhang, Y.

Appl. Opt.

Appl. Phys. Lett.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

IEEE J. Quantum Electron.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

J. Electron. Mater.

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Microelectron. Eng.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Opt. Express

Opt. Rev.

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Proc. SPIE

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Microlens array by one-step diffusion-limited wet-etching techniques with the nominal diameter of each element about 100µm. (b) Schematic diagram of microlens-integrated 980nm bottom-emitting oxide-confined element array.

Fig. 2
Fig. 2

L-I and V-I characteristics of microlens- integrated and conventional VCSEL array at a current of 4A D.C.

Fig. 3
Fig. 3

Comparison of far-field distribution of microlens-integrated and conventional VCSEL array at different driving currents. The inset of each figure is the far-field lasing intensity distribution under different currents.

Fig. 4
Fig. 4

Spectral performance between microlens-integrated VCSEL array and conventional VCSEL array at different operating currents.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I th = e M V a η i τ s p N t r exp { 1 M L z [ L e f f α i + 1 2 ln ( 1 R t o p R b o t ' ) ] } ,

Metrics