Abstract

High power and good beam quality of two-dimensional bottom-emitting vertical-cavity surface-emitting laser array with GaAs microlens on the substrate is achieved. Uniform and matched convex microlens is directly fabricated by one-step diffusion-limited wet-etching techniques on the emitting windows. The maximum output power is above 1W at continuous-wave operation at room temperature, and the far-field beam divergence is below 6.6°at a current of 4A. These properties between microlens-integrated and conventional device at different operating current are demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
    [CrossRef]
  2. M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
    [CrossRef]
  3. J. Cui, Y. Ning, Y. Zhang, P. Kong, G. Liu, X. Zhang, Z. Wang, T. Li, Y. Sun, and L. Wang, “Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution,” Appl. Opt. 48(18), 3317–3321 (2009).
    [CrossRef] [PubMed]
  4. J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
    [CrossRef]
  5. J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
    [CrossRef]
  6. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
    [CrossRef]
  7. F. Qi and N. K. A. Bryan, “Investigation of hybrid microlens integration with vertical-cavity surface-emitting lasers for free-space optical links,” Opt. Express 10(9), 413–418 (2002).
    [PubMed]
  8. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
    [CrossRef]
  9. G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
    [CrossRef]
  10. Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
    [CrossRef]
  11. S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
    [CrossRef]

2009 (2)

2008 (1)

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

2006 (1)

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

2002 (1)

2000 (1)

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

1999 (1)

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

1997 (2)

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

1994 (1)

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

1988 (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Bryan, N. K. A.

Choe, J.-S.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Coldren, L. A.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Cui, J.

D’Asaro, L. A.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Dennis, C. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Ebeling, K. J.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Ghosh, C. L.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Grabherr, M.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Hersee, S. D.

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Hu, E. L.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Iga, K.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Jager, R.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Jeon, H.

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Khalfin, V.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Kim, J.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Kim, Y.-S.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Kinoshita, S.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Kong, P.

Koyama, F.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Lee, S.

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Li, T.

Liau, Z. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Liu, G.

Martin, U.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Michalzik, R.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Miglo, A.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Miller, M.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Mull, D. E.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Ning, Y.

Park, S.-H.

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Peake, G. M.

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Pradhan, P.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Qi, F.

Robinson, G. D.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Roh, Y.-G.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Seurin, J.-F.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Strzelecka, E. M.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Sun, S. Z.

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Sun, Y.

Unold, H. J.

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

Waarts, R. G.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Wang, L.

Wang, Z.

Williamson, R. C.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

Woo, J. C.

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

Wynn, J. D.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Xu, G.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Zhang, X.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, and R. G. Waarts, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64(12), 1484–1486 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Grabherr, M. Miller, R. Jager, R. Michalzik, U. Martin, H. J. Unold, and K. J. Ebeling, “High-Power VCSEL’s: Single Devices and Densely Packed 2-D-Arrays,” IEEE J. Sel. Top. Quantum Electron. 5(3), 495–502 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y.-S. Kim, J. Kim, J.-S. Choe, Y.-G. Roh, H. Jeon, and J. C. Woo, “Semiconductor microlenses fabricated by one-step wet etching,” IEEE Photon. Technol. Lett. 12(5), 507–509 (2000).
[CrossRef]

J. Electron. Mater. (1)

G. M. Peake, S. Z. Sun, and S. D. Hersee, “GaAs microlens arrays grown by shadow masked MOVPE,” J. Electron. Mater. 26(10), 1134–1138 (1997).
[CrossRef]

Microelectron. Eng. (1)

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, and E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35(1–4), 385–388 (1997).
[CrossRef]

Opt. Express (1)

Opt. Rev. (1)

S.-H. Park, S. Lee, and H. Jeon, “Mode-Stabilized Operation in a Microlens-Integrated 980 nm Vertical-Cavity Surface-Emitting Laser,” Opt. Rev. 13(3), 146–148 (2006).
[CrossRef]

Proc. SPIE (2)

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D’Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Microlens array by one-step diffusion-limited wet-etching techniques with the nominal diameter of each element about 100µm. (b) Schematic diagram of microlens-integrated 980nm bottom-emitting oxide-confined element array.

Fig. 2
Fig. 2

L-I and V-I characteristics of microlens- integrated and conventional VCSEL array at a current of 4A D.C.

Fig. 3
Fig. 3

Comparison of far-field distribution of microlens-integrated and conventional VCSEL array at different driving currents. The inset of each figure is the far-field lasing intensity distribution under different currents.

Fig. 4
Fig. 4

Spectral performance between microlens-integrated VCSEL array and conventional VCSEL array at different operating currents.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I th = e M V a η i τ s p N t r exp { 1 M L z [ L e f f α i + 1 2 ln ( 1 R t o p R b o t ' ) ] } ,

Metrics