Abstract

We present two silver nanocones separated by 450 nm, well beyond the typical gap spacing of coupled nanoantennas, and connected by a metal bridge to facilitate plasmonic coupling between them. The tip-enhanced Raman scattering from crystal violet molecules is found to be almost an order of magnitude higher from the bridged cones than from individual cones. This result is supported by local-field calculations of the two types of structures. The bridged nanocones are easily fabricated by a nanoimprint-based process, thus offering a faster and simpler approach compared to other fabrication techniques.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Brongersma, and V. Shalaev, "The case for plasmonics," Science 328, 440-441 (2010).
    [CrossRef] [PubMed]
  2. X. Hoa, A. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
    [CrossRef] [PubMed]
  3. D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
    [CrossRef] [PubMed]
  4. E. Bailo, and V. Deckert, "Tip-enhanced Raman scattering," Chem. Soc. Rev. 37, 921-930 (2008).
    [CrossRef] [PubMed]
  5. T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
    [CrossRef]
  6. F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
    [CrossRef]
  7. C. Hsu, S. Connor, M. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Appl. Phys. Lett. 93, 133109 (2008).
    [CrossRef]
  8. J. Kontio, J. Simonen, J. Tommila, and M. Pessa, "Arrays of metallic nanocones fabricated by uv-nanoimprint lithography," Microelectron. Eng. 87, 1711-1715 (2010).
    [CrossRef]
  9. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, "On the reinterpretation of resonances in split-ring-resonators at normal incidence," Opt. Express 14, 8827-8836 (2006).
    [CrossRef] [PubMed]
  10. T. Corrigan, P. Kolb, A. Sushkov, H. Drew, D. Schmadel, and R. Phaneuf, "Optical plasmonic resonances in split-ring resonator structures: an improved lc model," Opt. Express 16, 19850-19864 (2008).
    [CrossRef] [PubMed]
  11. I. Mikhailyuk, and A. Razzhivin, "Background subtraction in experimental data arrays illustrated by the example of raman spectra and fluorescent gel electrophoresis patterns," Instrum. Exp. Tech. 46, 765-769 (2003).
    [CrossRef]
  12. A. Kudelski, "Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites?" Chem. Phys. Lett. 414, 271-275 (2005).
    [CrossRef]
  13. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, "Localization of near-field resonances in bowtie antennae: influence of adhesion layers," Plasmonics 4, 37-50 (2009).
    [CrossRef]
  14. R. Harrington, Field computation by moment methods (Wiley-IEEE Press, 1993).
    [CrossRef]
  15. C. Geuzaine, and J.-F. Remacle, "Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Methods Eng. 79, 1309-1331 (2009).
    [CrossRef]
  16. L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  17. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
    [CrossRef]
  18. H. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004).
    [CrossRef] [PubMed]

2010 (4)

M. Brongersma, and V. Shalaev, "The case for plasmonics," Science 328, 440-441 (2010).
[CrossRef] [PubMed]

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

J. Kontio, J. Simonen, J. Tommila, and M. Pessa, "Arrays of metallic nanocones fabricated by uv-nanoimprint lithography," Microelectron. Eng. 87, 1711-1715 (2010).
[CrossRef]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

2009 (3)

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, "Localization of near-field resonances in bowtie antennae: influence of adhesion layers," Plasmonics 4, 37-50 (2009).
[CrossRef]

C. Geuzaine, and J.-F. Remacle, "Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Methods Eng. 79, 1309-1331 (2009).
[CrossRef]

T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
[CrossRef]

2008 (3)

E. Bailo, and V. Deckert, "Tip-enhanced Raman scattering," Chem. Soc. Rev. 37, 921-930 (2008).
[CrossRef] [PubMed]

C. Hsu, S. Connor, M. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

T. Corrigan, P. Kolb, A. Sushkov, H. Drew, D. Schmadel, and R. Phaneuf, "Optical plasmonic resonances in split-ring resonator structures: an improved lc model," Opt. Express 16, 19850-19864 (2008).
[CrossRef] [PubMed]

2007 (2)

X. Hoa, A. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

A. Kudelski, "Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites?" Chem. Phys. Lett. 414, 271-275 (2005).
[CrossRef]

2004 (1)

H. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

2003 (1)

I. Mikhailyuk, and A. Razzhivin, "Background subtraction in experimental data arrays illustrated by the example of raman spectra and fluorescent gel electrophoresis patterns," Instrum. Exp. Tech. 46, 765-769 (2003).
[CrossRef]

1997 (1)

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Andreani, L.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Angelis, F.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Bailo, E.

E. Bailo, and V. Deckert, "Tip-enhanced Raman scattering," Chem. Soc. Rev. 37, 921-930 (2008).
[CrossRef] [PubMed]

Bek, A.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Blair, S.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, "Localization of near-field resonances in bowtie antennae: influence of adhesion layers," Plasmonics 4, 37-50 (2009).
[CrossRef]

Brongersma, M.

M. Brongersma, and V. Shalaev, "The case for plasmonics," Science 328, 440-441 (2010).
[CrossRef] [PubMed]

Candeloro, P.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Connor, S.

C. Hsu, S. Connor, M. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Corrigan, T.

Cui, Y.

C. Hsu, S. Connor, M. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Das, G.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Deckert, V.

E. Bailo, and V. Deckert, "Tip-enhanced Raman scattering," Chem. Soc. Rev. 37, 921-930 (2008).
[CrossRef] [PubMed]

Dresselhaus, M.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Drew, H.

Etrich, C.

Fabrizio, E.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Fang, Y.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Felderer, K.

H. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Frey, H.

H. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Galli, M.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Geuzaine, C.

C. Geuzaine, and J.-F. Remacle, "Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Methods Eng. 79, 1309-1331 (2009).
[CrossRef]

Giessen, H.

Goeckeritz, J.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, "Localization of near-field resonances in bowtie antennae: influence of adhesion layers," Plasmonics 4, 37-50 (2009).
[CrossRef]

Grady, N.

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

Guckenberger, R.

H. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Halas, N.

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

Hoa, X.

X. Hoa, A. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Hsu, C.

C. Hsu, S. Connor, M. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Ichimura, T.

T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
[CrossRef]

Jiao, X.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, "Localization of near-field resonances in bowtie antennae: influence of adhesion layers," Plasmonics 4, 37-50 (2009).
[CrossRef]

Kawata, S.

T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
[CrossRef]

Kirk, A.

X. Hoa, A. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Kolb, P.

Kong, J.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Kontio, J.

J. Kontio, J. Simonen, J. Tommila, and M. Pessa, "Arrays of metallic nanocones fabricated by uv-nanoimprint lithography," Microelectron. Eng. 87, 1711-1715 (2010).
[CrossRef]

Kudelski, A.

A. Kudelski, "Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites?" Chem. Phys. Lett. 414, 271-275 (2005).
[CrossRef]

Kuhl, J.

Lazzarino, M.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Lederer, F.

Levin, C.

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

Liberale, C.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Ling, X.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Liu, Z.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Maddalena, P.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Maksymov, I.

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Mikhailyuk, I.

I. Mikhailyuk, and A. Razzhivin, "Background subtraction in experimental data arrays illustrated by the example of raman spectra and fluorescent gel electrophoresis patterns," Instrum. Exp. Tech. 46, 765-769 (2003).
[CrossRef]

Natelson, D.

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

Nordlander, P.

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Oldham, M.

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, "Localization of near-field resonances in bowtie antennae: influence of adhesion layers," Plasmonics 4, 37-50 (2009).
[CrossRef]

Pessa, M.

J. Kontio, J. Simonen, J. Tommila, and M. Pessa, "Arrays of metallic nanocones fabricated by uv-nanoimprint lithography," Microelectron. Eng. 87, 1711-1715 (2010).
[CrossRef]

Phaneuf, R.

Razzhivin, A.

I. Mikhailyuk, and A. Razzhivin, "Background subtraction in experimental data arrays illustrated by the example of raman spectra and fluorescent gel electrophoresis patterns," Instrum. Exp. Tech. 46, 765-769 (2003).
[CrossRef]

Remacle, J.-F.

C. Geuzaine, and J.-F. Remacle, "Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Methods Eng. 79, 1309-1331 (2009).
[CrossRef]

Rockstuhl, C.

Saito, Y.

T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
[CrossRef]

Schmadel, D.

Shalaev, V.

M. Brongersma, and V. Shalaev, "The case for plasmonics," Science 328, 440-441 (2010).
[CrossRef] [PubMed]

Simonen, J.

J. Kontio, J. Simonen, J. Tommila, and M. Pessa, "Arrays of metallic nanocones fabricated by uv-nanoimprint lithography," Microelectron. Eng. 87, 1711-1715 (2010).
[CrossRef]

Sushkov, A.

Tabrizian, M.

X. Hoa, A. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Tang, M.

C. Hsu, S. Connor, M. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Tommila, J.

J. Kontio, J. Simonen, J. Tommila, and M. Pessa, "Arrays of metallic nanocones fabricated by uv-nanoimprint lithography," Microelectron. Eng. 87, 1711-1715 (2010).
[CrossRef]

Verma, P.

T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
[CrossRef]

Ward, D.

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

Witt, S.

H. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

Wu, Y.

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

Xie, L.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Xu, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Yano, T.

T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
[CrossRef]

Zentgraf, T.

Zhang, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Zhang, J.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

C. Hsu, S. Connor, M. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Appl. Phys. Lett. 93, 133109 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

X. Hoa, A. Kirk, and M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress," Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

A. Kudelski, "Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites?" Chem. Phys. Lett. 414, 271-275 (2005).
[CrossRef]

Chem. Soc. Rev. (1)

E. Bailo, and V. Deckert, "Tip-enhanced Raman scattering," Chem. Soc. Rev. 37, 921-930 (2008).
[CrossRef] [PubMed]

Instrum. Exp. Tech. (1)

I. Mikhailyuk, and A. Razzhivin, "Background subtraction in experimental data arrays illustrated by the example of raman spectra and fluorescent gel electrophoresis patterns," Instrum. Exp. Tech. 46, 765-769 (2003).
[CrossRef]

Int. J. Numer. Methods Eng. (1)

C. Geuzaine, and J.-F. Remacle, "Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Methods Eng. 79, 1309-1331 (2009).
[CrossRef]

Microelectron. Eng. (1)

J. Kontio, J. Simonen, J. Tommila, and M. Pessa, "Arrays of metallic nanocones fabricated by uv-nanoimprint lithography," Microelectron. Eng. 87, 1711-1715 (2010).
[CrossRef]

Nano Lett. (2)

D. Ward, N. Grady, C. Levin, N. Halas, Y. Wu, P. Nordlander, and D. Natelson, "Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy," Nano Lett. 7, 1396-1400 (2007).
[CrossRef] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett. 10, 553-561 (2010).
[CrossRef]

Nat. Nanotechnol. (1)

F. Angelis, G. Das, P. Candeloro, P. Maddalena, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. Andreani, and E. Fabrizio, "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nanotechnol. 5, 67-72 (2010).
[CrossRef]

Nat. Photonics (1)

T. Yano, P. Verma, Y. Saito, T. Ichimura, and S. Kawata, "Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres," Nat. Photonics 3, 473-477 (2009).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (2)

H. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett. 93, 200801 (2004).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Plasmonics (1)

X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, "Localization of near-field resonances in bowtie antennae: influence of adhesion layers," Plasmonics 4, 37-50 (2009).
[CrossRef]

Science (1)

M. Brongersma, and V. Shalaev, "The case for plasmonics," Science 328, 440-441 (2010).
[CrossRef] [PubMed]

Other (1)

R. Harrington, Field computation by moment methods (Wiley-IEEE Press, 1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

FE-SEM images of the single (a) and bridged (b) nanocones structures with drawings depicting their dimensions included (insets). An illustration (c) of the orientation of the cones in the experimental setup is also given.

Fig. 2
Fig. 2

(color online) a) The emission spectra for the bridged nanocones (1) and single nanocone (2) in the presence of CV. The background signal (3), obtained by measuring from a point in the solution away from the cones, is given. b) The resulting Raman bands after the CV fluorescence background has been removed demonstrating the TERS enhancement improvement of the bridged nanocones (red) compared to the single nanocone (black).

Fig. 3
Fig. 3

Local field amplitude distribution simulations for three structures: single nanocone (a), two nanocones separated by 450 nm (b), and the bridged nanocones structure (c). The amplitudes were normalized to the maximum value of the focused beam without the structures. A 5-fold increase in field amplitude is observed at the tips of the bridged structure compared to single nanocones.

Metrics