Abstract

We report on manufacturing and testing results of high efficiency mixed metal dielectric gratings (MMLD) for high power pulse compression applications. The gratings with 1780 l/mm are etched in the top low index layer of a Au-(SiO2/HfO2)4-SiO2 mirror stack. Various grating profiles manufactured in order to modify the near electric field distribution are damage tested on a facility operating at 1.053 µm, 500 fs pulse duration. We evidence that damage threshold is governed by the value of the maximum electric field intensity inside the grating pillar. Moreover thresholds close to 3 J/cm2 beam normal are obtained with this new MMLD grating being thus an interesting alternative to gold and pure dielectric gratings for pulse compression applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  2. N. Blanchot, and C. Rouyer, “Lasers femtosecondes de forte intensité et forte énergie,” in Lasers et technologies femtosecondes, M. Sentis, O. Uteza, eds (Publications de l'Université de Saint Etienne, 2004), pp. 33–43.
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996).
    [CrossRef]
  4. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995).
    [CrossRef] [PubMed]
  5. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [CrossRef] [PubMed]
  6. N. Bonod and J. Neauport, “Optical performances and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260(2), 649–655 (2006).
    [CrossRef]
  7. S. Palmier, J. Neauport, N. Baclet, E. Lavastre, and G. Dupuy, “High reflection mirrors for pulse compression gratings,” Opt. Express 17(22), 20430–20439 (2009).
    [CrossRef] [PubMed]
  8. N. Blanchot, E. Bar, G. Behar, C. Bellet, D. Bigourd, F. Boubault, C. Chappuis, H. Coïc, C. Damiens-Dupont, O. Flour, O. Hartmann, L. Hilsz, E. Hugonnot, E. Lavastre, J. Luce, E. Mazataud, J. Neauport, S. Noailles, B. Remy, F. Sautarel, M. Sautet, and C. Rouyer, “Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers,” Opt. Express 18(10), 10088–10097 (2010).
    [CrossRef] [PubMed]
  9. N. Blanchot, G. Marre, J. Néauport, E. Sibé, C. Rouyer, S. Montant, A. Cotel, C. Le Blanc, and C. Sauteret, “Synthetic aperture compression scheme for a multipetawatt high-energy laser,” Appl. Opt. 45(23), 6013–6021 (2006).
    [CrossRef] [PubMed]
  10. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15(19), 12508–12522 (2007).
    [CrossRef] [PubMed]
  11. HORIBA Jobin Yvon SAS, 16–18 rue du Canal, 91165 Longjumeau cedex, France.
  12. C. J. Stolz, J. R. Taylor, W. K. Eickelberg, and J. D. Lindh, “Effects of vacuum exposure on stress and spectral shift of high reflective coatings,” Appl. Opt. 32(28), 5666–5672 (1993).
    [CrossRef] [PubMed]
  13. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41(16), 3211–3217 (2002).
    [CrossRef] [PubMed]
  14. T. Z. Kosc, A. A. Kozlov, and A. W. Schmid, “Formation of periodic microstructures on multilayer dielectric gratings prior to total ablation,” Opt. Express 14(22), 10921–10929 (2006).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2007 (1)

2006 (3)

2002 (1)

1996 (1)

1995 (2)

M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

1993 (1)

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Baclet, N.

Balas, M.

Bar, E.

Behar, G.

Bellet, C.

Bigourd, D.

Blanchot, N.

Bonod, N.

J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15(19), 12508–12522 (2007).
[CrossRef] [PubMed]

N. Bonod and J. Neauport, “Optical performances and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260(2), 649–655 (2006).
[CrossRef]

Boubault, F.

Boyd, R. D.

Britten, J. A.

Chappuis, C.

Coïc, H.

Cotel, A.

Damiens-Dupont, C.

de Villele, G.

Decker, D.

Desserouer, F.

Dupuy, G.

Eickelberg, W. K.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Flamand, J.

Flour, O.

Gatto, A.

Hartmann, O.

Herman, S.

Hilsz, L.

Hugonnot, E.

Kaiser, N.

Kaladgew, S.

Kosc, T. Z.

Kozlov, A. A.

Lavastre, E.

Le Blanc, C.

Lindh, J. D.

Luce, J.

Marre, G.

Mazataud, E.

Montant, S.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Neauport, J.

Néauport, J.

Noailles, S.

Palmier, S.

Perry, M. D.

Razé, G.

Remy, B.

Rouyer, C.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Sautarel, F.

Sauteret, C.

Sautet, M.

Schmid, A. W.

Shannon, C.

Shore, B. W.

Shults, E.

Sibé, E.

Stolz, C. J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Taylor, J. R.

Thielsch, R.

Appl. Opt. (3)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

N. Bonod and J. Neauport, “Optical performances and laser induced damage threshold improvement of diffraction gratings used as compressors in ultra high intensity lasers,” Opt. Commun. 260(2), 649–655 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Other (2)

HORIBA Jobin Yvon SAS, 16–18 rue du Canal, 91165 Longjumeau cedex, France.

N. Blanchot, and C. Rouyer, “Lasers femtosecondes de forte intensité et forte énergie,” in Lasers et technologies femtosecondes, M. Sentis, O. Uteza, eds (Publications de l'Université de Saint Etienne, 2004), pp. 33–43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A silica layer of thickness H is coated on a MMLD mirror reflecting more than 99% of the incident light (λ = 1053 nm and θ = 70.6°). A grating is ion etched in the silica layer with a period d, a groove height h, and a groove width at the half depth c 1/2. The residual thickness of the silica layer is denoted e. Pillars present a trapezoidal geometry with angle of slope α taken equal to 83° in the whole manuscript.

Fig. 2
Fig. 2

Maximum value of the enhancement of the electric field |E|2 in the solid material normalized by the incident field |E0|2 as a function of the reflected efficiency. An enhancement of about 1.25 can be obtained for efficiencies close to 94%.

Fig. 3
Fig. 3

Reconstitution of |E/E0|2 in the top area of gratings 06-0676 (a), and 06-0679 (b) respectively.

Fig. 4
Fig. 4

Damage probability of MMLD gratings. 1057nm, 500fs, TE polarization, at the incidence of 77,2°. Fluences are given in beam normal.

Fig. 5
Fig. 5

Damage performance at 1.053 μm, TE polarization, 500 fs versus 1/|E/E0|2 in the solid material on three different MMLD samples tested at 77.2°. Damage threshold is proportional to the inverse of the electric field enhancement. Comparison with MLD grating [10] is also displayed.

Fig. 6
Fig. 6

Damage morphology on MMLD grating sample 06-0676 at different stages of the damage: the initiation with some limited growth [Fig. 6(a)], subsequent growth [Fig. 6(b)], the damage for the highest fluence tested [Fig. 6(c)]. Figure 6(d) is a zoom of the damage from Fig. 6(c) made with the x100 microscope objective.

Tables (2)

Tables Icon

Table 1 Fitted design for each sample. Quantities in nanometres are physical thicknesses of each layer

Tables Icon

Table 2 MMLD grating manufactured. (−1) diffraction efficiency measurements are in good agreement with simulations. Diffraction efficiency and grating profile are given at the position of the future damage test

Metrics