Abstract

We propose an experimental method with which all the following quantities can be determined separately: the intracavity loss and individual cavity-mirror transmittances of a monolithic Fabry-Perot cavity and furthermore the coupling efficiency between the cavity mode and the incident light. It is notable that the modified version of this method can also be applied to whispering-gallery-mode cavities. Using this method, we measured the intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5 at room temperature. The knowledge of the intracavity losses is very important for applications of such cavities, e.g., to quantum information technologies. It turns out that fairly high losses (about 0.1%) exist even for a sample with extremely low dopant concentration (2 × 10−5 at. %). The experimental results also indicate that the loss may be mainly due to the bulk loss of Y2SiO5 crystal. The bulk loss is estimated to be 7 × 10−4 cm−1 (0.003 dB/cm) or lower.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Spectroscopy of Solids Containing Rare-Earth Ions, edited by A. A. Kaplyanskii and R. M. Macfarlane (North-Holland, Amsterdam, 1987).
  2. Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
    [CrossRef]
  3. R. M. Macfarlane, "High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective," J. Lumin. 100, 1-20 (2002) (and references therein).
    [CrossRef]
  4. E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic Decoherence Control of a Solid-State Nuclear-Quadrupole Qubit," Phys. Rev. Lett. 95, 030506 (2005).
    [CrossRef] [PubMed]
  5. S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009).
    [CrossRef]
  6. K. Ichimura, "A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode," Opt. Commun. 196, 119-125 (2001).
    [CrossRef]
  7. M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
    [CrossRef]
  8. N. Ohlsson, R. K. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
    [CrossRef]
  9. J. Wesenberg, and K. Mølmer, "Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals," Phys. Rev. A 68, 012320 (2003).
    [CrossRef]
  10. I. Roos, and K. Mølmer, "Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping," Phys. Rev. A 69, 022321 (2004).
    [CrossRef]
  11. Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
    [CrossRef]
  12. Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004).
    [CrossRef]
  13. J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007).
    [CrossRef]
  14. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, "Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal," Opt. Lett. 22, 1138-1140 (1997).
    [CrossRef] [PubMed]
  15. K. Ichimura, K. Yamamoto, and N. Gemma, "Evidence for electromagnetically induced transparency in a solid medium," Phys. Rev. A 58, 4116-4120 (1998).
    [CrossRef]
  16. E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
    [CrossRef]
  17. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
    [CrossRef]
  18. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
    [CrossRef] [PubMed]
  19. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, "Efficient quantum memory for light," Nature 465, 1052-1056 (2010).
    [CrossRef] [PubMed]
  20. M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
    [CrossRef] [PubMed]
  21. H. Goto, and K. Ichimura, "Population transfer via stimulated Raman adiabatic passage in a solid," Phys. Rev. A 74, 053410 (2006).
    [CrossRef]
  22. H. Goto, and K. Ichimura, "Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal," Phys. Rev. A 75, 033404 (2007).
    [CrossRef]
  23. J. Klein, F. Beil, and T. Halfmann, "Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr3+:Y2SiO5," Phys. Rev. Lett. 99, 113003 (2007).
    [CrossRef] [PubMed]
  24. A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
    [CrossRef]
  25. J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004).
    [CrossRef] [PubMed]
  26. C. Q. Electrodynamics, edited by P. R. Berman, Adv. At. Mol. Opt. Phys. Suppl. 2 (Academic Press, San Diego, 1994).
  27. D. L. McAuslan, J. J. Longdell, and M. J. Sellars, "Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: What you can do with a weak oscillator," Phys. Rev. A 80, 062307 (2009).
    [CrossRef]
  28. C. Greiner, B. Boggs, and T. W. Mossberg, "Superradiant Emission Dynamics of an Optically Thin Material Sample in a Short-Decay-Time Optical Cavity," Phys. Rev. Lett. 85, 3793-3796 (2000).
    [CrossRef] [PubMed]
  29. C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001).
    [CrossRef] [PubMed]
  30. C. Greiner, B. Boggs, and T. W. Mossberg, "Frustrated pulse-area quantization in accelerated superradiant atom cavity systems," Phys. Rev. A 67, 063811 (2003).
    [CrossRef]
  31. K. Ichimura, and H. Goto, "Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode," Phys. Rev. A 74, 033818 (2006).
    [CrossRef]
  32. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, "Precision measurement of ultralow losses of an asymmetric optical microcavity," Appl. Opt. 45, 7628-7631 (2006).
    [CrossRef] [PubMed]
  33. A. Yariv, Optical Electronics in Modern Communications, Fifth Edition (Oxford University Press, New York, 1997).
  34. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
    [CrossRef]
  35. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
    [CrossRef]
  36. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, "Optical cavities with ten million finesse," Opt. Express 15, 6768-6772 (2007).
    [CrossRef] [PubMed]
  37. V. S. Ilchenko, A. A. Savchenkov, J. Byrd, I. Solomatine, A. B. Matsko, D. Seidel, and L. Maleki, "Crystal quartz optical whispering-gallery cavities," Opt. Lett. 33, 1569-1571 (2008).
    [CrossRef] [PubMed]
  38. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
    [CrossRef]
  39. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
    [CrossRef]
  40. H. Goto, and K. Ichimura, "Upper bound for the success probability of cavity-mediated adiabatic transfer in the presence of dissipation," Phys. Rev. A 77, 013816 (2008).
    [CrossRef]
  41. H. Goto, and K. Ichimura, "Condition for fault-tolerant quantum computation with a cavity-QED scheme," Phys. Rev. A 82, 032311 (2010).
    [CrossRef]
  42. H. Goto, and K. Ichimura, "Expectation-value approach to photon statistics in cavity QED," Phys. Rev. A 70, 023815 (2004) (and references therein).
    [CrossRef]
  43. R. W. Equall, R. L. Cone, and R. M. Macfarlane, "Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5," Phys. Rev. B 52, 3963-3969 (1995).
    [CrossRef]
  44. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
    [CrossRef]

2010 (4)

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, "Efficient quantum memory for light," Nature 465, 1052-1056 (2010).
[CrossRef] [PubMed]

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

H. Goto, and K. Ichimura, "Condition for fault-tolerant quantum computation with a cavity-QED scheme," Phys. Rev. A 82, 032311 (2010).
[CrossRef]

2009 (2)

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009).
[CrossRef]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, "Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: What you can do with a weak oscillator," Phys. Rev. A 80, 062307 (2009).
[CrossRef]

2008 (3)

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
[CrossRef]

H. Goto, and K. Ichimura, "Upper bound for the success probability of cavity-mediated adiabatic transfer in the presence of dissipation," Phys. Rev. A 77, 013816 (2008).
[CrossRef]

V. S. Ilchenko, A. A. Savchenkov, J. Byrd, I. Solomatine, A. B. Matsko, D. Seidel, and L. Maleki, "Crystal quartz optical whispering-gallery cavities," Opt. Lett. 33, 1569-1571 (2008).
[CrossRef] [PubMed]

2007 (4)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, and L. Maleki, "Optical cavities with ten million finesse," Opt. Express 15, 6768-6772 (2007).
[CrossRef] [PubMed]

J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007).
[CrossRef]

H. Goto, and K. Ichimura, "Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal," Phys. Rev. A 75, 033404 (2007).
[CrossRef]

J. Klein, F. Beil, and T. Halfmann, "Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr3+:Y2SiO5," Phys. Rev. Lett. 99, 113003 (2007).
[CrossRef] [PubMed]

2006 (3)

H. Goto, and K. Ichimura, "Population transfer via stimulated Raman adiabatic passage in a solid," Phys. Rev. A 74, 053410 (2006).
[CrossRef]

K. Ichimura, and H. Goto, "Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode," Phys. Rev. A 74, 033818 (2006).
[CrossRef]

G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, "Precision measurement of ultralow losses of an asymmetric optical microcavity," Appl. Opt. 45, 7628-7631 (2006).
[CrossRef] [PubMed]

2005 (3)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic Decoherence Control of a Solid-State Nuclear-Quadrupole Qubit," Phys. Rev. Lett. 95, 030506 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

2004 (7)

H. Goto, and K. Ichimura, "Expectation-value approach to photon statistics in cavity QED," Phys. Rev. A 70, 023815 (2004) (and references therein).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

I. Roos, and K. Mølmer, "Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping," Phys. Rev. A 69, 022321 (2004).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004).
[CrossRef]

J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

2003 (2)

C. Greiner, B. Boggs, and T. W. Mossberg, "Frustrated pulse-area quantization in accelerated superradiant atom cavity systems," Phys. Rev. A 67, 063811 (2003).
[CrossRef]

J. Wesenberg, and K. Mølmer, "Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals," Phys. Rev. A 68, 012320 (2003).
[CrossRef]

2002 (3)

N. Ohlsson, R. K. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
[CrossRef]

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

R. M. Macfarlane, "High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective," J. Lumin. 100, 1-20 (2002) (and references therein).
[CrossRef]

2001 (4)

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

K. Ichimura, "A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode," Opt. Commun. 196, 119-125 (2001).
[CrossRef]

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

2000 (1)

C. Greiner, B. Boggs, and T. W. Mossberg, "Superradiant Emission Dynamics of an Optically Thin Material Sample in a Short-Decay-Time Optical Cavity," Phys. Rev. Lett. 85, 3793-3796 (2000).
[CrossRef] [PubMed]

1998 (2)

K. Ichimura, K. Yamamoto, and N. Gemma, "Evidence for electromagnetically induced transparency in a solid medium," Phys. Rev. A 58, 4116-4120 (1998).
[CrossRef]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
[CrossRef]

1997 (1)

1995 (1)

R. W. Equall, R. L. Cone, and R. M. Macfarlane, "Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5," Phys. Rev. B 52, 3963-3969 (1995).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Alexander, A. L.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
[CrossRef]

Amari, A.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

Baldit, E.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Beaudoin, F.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

Beavan, S. E.

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009).
[CrossRef]

Beil, F.

J. Klein, F. Beil, and T. Halfmann, "Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr3+:Y2SiO5," Phys. Rev. Lett. 99, 113003 (2007).
[CrossRef] [PubMed]

Bencheikh, K.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Bhatia, P. S.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

Boggs, B.

C. Greiner, B. Boggs, and T. W. Mossberg, "Frustrated pulse-area quantization in accelerated superradiant atom cavity systems," Phys. Rev. A 67, 063811 (2003).
[CrossRef]

C. Greiner, B. Boggs, and T. W. Mossberg, "Superradiant Emission Dynamics of an Optically Thin Material Sample in a Short-Decay-Time Optical Cavity," Phys. Rev. Lett. 85, 3793-3796 (2000).
[CrossRef] [PubMed]

Bowers, J. A.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

Bretenaker, F.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Briaudeau, S.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Byrd, J.

Chanelière, T.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
[CrossRef]

Cone, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, "Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5," Phys. Rev. B 52, 3963-3969 (1995).
[CrossRef]

Craig, A. E.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

Crozatier, V.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Demsky, B.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Equall, R. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, "Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5," Phys. Rev. B 52, 3963-3969 (1995).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Fraval, E.

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic Decoherence Control of a Solid-State Nuclear-Quadrupole Qubit," Phys. Rev. Lett. 95, 030506 (2005).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Gao, J.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Gemma, N.

K. Ichimura, K. Yamamoto, and N. Gemma, "Evidence for electromagnetically induced transparency in a solid medium," Phys. Rev. A 58, 4116-4120 (1998).
[CrossRef]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Goldner, Ph.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Goto, H.

H. Goto, and K. Ichimura, "Condition for fault-tolerant quantum computation with a cavity-QED scheme," Phys. Rev. A 82, 032311 (2010).
[CrossRef]

H. Goto, and K. Ichimura, "Upper bound for the success probability of cavity-mediated adiabatic transfer in the presence of dissipation," Phys. Rev. A 77, 013816 (2008).
[CrossRef]

H. Goto, and K. Ichimura, "Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal," Phys. Rev. A 75, 033404 (2007).
[CrossRef]

H. Goto, and K. Ichimura, "Population transfer via stimulated Raman adiabatic passage in a solid," Phys. Rev. A 74, 053410 (2006).
[CrossRef]

K. Ichimura, and H. Goto, "Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode," Phys. Rev. A 74, 033818 (2006).
[CrossRef]

H. Goto, and K. Ichimura, "Expectation-value approach to photon statistics in cavity QED," Phys. Rev. A 70, 023815 (2004) (and references therein).
[CrossRef]

Greiner, C.

C. Greiner, B. Boggs, and T. W. Mossberg, "Frustrated pulse-area quantization in accelerated superradiant atom cavity systems," Phys. Rev. A 67, 063811 (2003).
[CrossRef]

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

C. Greiner, B. Boggs, and T. W. Mossberg, "Superradiant Emission Dynamics of an Optically Thin Material Sample in a Short-Decay-Time Optical Cavity," Phys. Rev. Lett. 85, 3793-3796 (2000).
[CrossRef] [PubMed]

Guillot-Noël, O.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Guo, G.-C.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004).
[CrossRef]

Halfmann, T.

J. Klein, F. Beil, and T. Halfmann, "Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr3+:Y2SiO5," Phys. Rev. Lett. 99, 113003 (2007).
[CrossRef] [PubMed]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, "Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal," Opt. Lett. 22, 1138-1140 (1997).
[CrossRef] [PubMed]

Han, Z.-F.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004).
[CrossRef]

Hedges, M. P.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, "Efficient quantum memory for light," Nature 465, 1052-1056 (2010).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, "Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal," Opt. Lett. 22, 1138-1140 (1997).
[CrossRef] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Huang, M.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

Hutcheson, R. L.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

Ichimura, K.

H. Goto, and K. Ichimura, "Condition for fault-tolerant quantum computation with a cavity-QED scheme," Phys. Rev. A 82, 032311 (2010).
[CrossRef]

H. Goto, and K. Ichimura, "Upper bound for the success probability of cavity-mediated adiabatic transfer in the presence of dissipation," Phys. Rev. A 77, 013816 (2008).
[CrossRef]

H. Goto, and K. Ichimura, "Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal," Phys. Rev. A 75, 033404 (2007).
[CrossRef]

H. Goto, and K. Ichimura, "Population transfer via stimulated Raman adiabatic passage in a solid," Phys. Rev. A 74, 053410 (2006).
[CrossRef]

K. Ichimura, and H. Goto, "Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode," Phys. Rev. A 74, 033818 (2006).
[CrossRef]

H. Goto, and K. Ichimura, "Expectation-value approach to photon statistics in cavity QED," Phys. Rev. A 70, 023815 (2004) (and references therein).
[CrossRef]

K. Ichimura, "A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode," Opt. Commun. 196, 119-125 (2001).
[CrossRef]

K. Ichimura, K. Yamamoto, and N. Gemma, "Evidence for electromagnetically induced transparency in a solid medium," Phys. Rev. A 58, 4116-4120 (1998).
[CrossRef]

Ilchenko, V. S.

Kimble, H. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

Klein, J.

J. Klein, F. Beil, and T. Halfmann, "Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr3+:Y2SiO5," Phys. Rev. Lett. 99, 113003 (2007).
[CrossRef] [PubMed]

Klieber, R.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Kröll, S.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
[CrossRef]

N. Ohlsson, R. K. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
[CrossRef]

Lauro, R.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
[CrossRef]

Le Gouët, J. L.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
[CrossRef]

Levenson, J. A.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Li, G.

Li, Y.

Lin, N.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

Lin, X.-M.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Lloyd, S.

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

Loftus, T.

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

Longdell, J. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, "Efficient quantum memory for light," Nature 465, 1052-1056 (2010).
[CrossRef] [PubMed]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, "Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: What you can do with a weak oscillator," Phys. Rev. A 80, 062307 (2009).
[CrossRef]

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic Decoherence Control of a Solid-State Nuclear-Quadrupole Qubit," Phys. Rev. Lett. 95, 030506 (2005).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Lorgeré, I.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Louchet, A.

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
[CrossRef]

Mabuchi, H.

Macfarlane, R. M.

R. M. Macfarlane, "High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective," J. Lumin. 100, 1-20 (2002) (and references therein).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, "Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5," Phys. Rev. B 52, 3963-3969 (1995).
[CrossRef]

Maleki, L.

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Matsko, A. B.

McAuslan, D. L.

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, "Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: What you can do with a weak oscillator," Phys. Rev. A 80, 062307 (2009).
[CrossRef]

Mohan, R. K.

N. Ohlsson, R. K. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
[CrossRef]

Mølmer, K.

J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007).
[CrossRef]

I. Roos, and K. Mølmer, "Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping," Phys. Rev. A 69, 022321 (2004).
[CrossRef]

J. Wesenberg, and K. Mølmer, "Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals," Phys. Rev. A 68, 012320 (2003).
[CrossRef]

Monnier, P.

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

Mossberg, T. W.

C. Greiner, B. Boggs, and T. W. Mossberg, "Frustrated pulse-area quantization in accelerated superradiant atom cavity systems," Phys. Rev. A 67, 063811 (2003).
[CrossRef]

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

C. Greiner, B. Boggs, and T. W. Mossberg, "Superradiant Emission Dynamics of an Optically Thin Material Sample in a Short-Decay-Time Optical Cavity," Phys. Rev. Lett. 85, 3793-3796 (2000).
[CrossRef] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Nilsson, M.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
[CrossRef]

Ohlsson, N.

N. Ohlsson, R. K. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
[CrossRef]

Rippe, L.

J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
[CrossRef]

Roos, I.

I. Roos, and K. Mølmer, "Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping," Phys. Rev. A 69, 022321 (2004).
[CrossRef]

Sabooni, M.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

Savchenkov, A. A.

Seidel, D.

Sellars, M. J.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, "Efficient quantum memory for light," Nature 465, 1052-1056 (2010).
[CrossRef] [PubMed]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, "Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: What you can do with a weak oscillator," Phys. Rev. A 80, 062307 (2009).
[CrossRef]

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009).
[CrossRef]

E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic Decoherence Control of a Solid-State Nuclear-Quadrupole Qubit," Phys. Rev. Lett. 95, 030506 (2005).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

B. S. Ham, M. S. Shahriar, and P. R. Hemmer, "Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal," Opt. Lett. 22, 1138-1140 (1997).
[CrossRef] [PubMed]

Solomatine, I.

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

Streed, E. W.

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Sun, Y.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

Suter, D.

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
[CrossRef]

Thiel, C. W.

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

Vernooy, D. W.

Walther, A.

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

Wang, J.

Wang, T.

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

Wang, X.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

Wesenberg, J.

J. Wesenberg, and K. Mølmer, "Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals," Phys. Rev. A 68, 012320 (2003).
[CrossRef]

Wesenberg, J. H.

J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007).
[CrossRef]

Wilcut, E.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

Xiao, Y.-F.

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Yamamoto, K.

K. Ichimura, K. Yamamoto, and N. Gemma, "Evidence for electromagnetically induced transparency in a solid medium," Phys. Rev. A 58, 4116-4120 (1998).
[CrossRef]

Yang, Y.

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004).
[CrossRef]

Zhang, J.

Zhang, T.

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

Appl. Phys., B Photophys. Laser Chem. (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys., B Photophys. Laser Chem. B31, 97-105 (1983).
[CrossRef]

J. Lumin. (2)

Y. Sun, C. W. Thiel, R. L. Cone, R. W. Equall, and R. L. Hutcheson, "Recent progress in developing new rare earth materials for hole burning and coherent transient applications," J. Lumin. 98, 281-287 (2002).
[CrossRef]

R. M. Macfarlane, "High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective," J. Lumin. 100, 1-20 (2002) (and references therein).
[CrossRef]

Nature (1)

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, "Efficient quantum memory for light," Nature 465, 1052-1056 (2010).
[CrossRef] [PubMed]

Opt. Commun. (3)

K. Ichimura, "A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode," Opt. Commun. 196, 119-125 (2001).
[CrossRef]

M. S. Shahriar, J. A. Bowers, B. Demsky, P. S. Bhatia, S. Lloyd, P. R. Hemmer, and A. E. Craig, "Cavity dark states for quantum computing," Opt. Commun. 195, 411-417 (2001).
[CrossRef]

N. Ohlsson, R. K. Mohan, and S. Kröll, "Quantum computer hardware based on rare-earth-ion-doped inorganic crystals," Opt. Commun. 201, 71-77 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Lett. A (1)

Y.-F. Xiao, Z.-F. Han, Y. Yang, and G.-C. Guo, "Quantum CPF gates between rare earth ions through measurement," Phys. Lett. A 330, 137-141 (2004).
[CrossRef]

Phys. Rev. A (15)

J. H. Wesenberg, K. Mølmer, L. Rippe, and S. Kröll, "Scalable designs for quantum computing with rare-earth ion-doped crystals," Phys. Rev. A 75, 012304 (2007).
[CrossRef]

J. Wesenberg, and K. Mølmer, "Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals," Phys. Rev. A 68, 012320 (2003).
[CrossRef]

I. Roos, and K. Mølmer, "Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping," Phys. Rev. A 69, 022321 (2004).
[CrossRef]

Y.-F. Xiao, X.-M. Lin, J. Gao, Y. Yang, Z.-F. Han, and G.-C. Guo, "Realizing Quantum Controlled Phase Flip through Cavity-QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, "Ultrahigh-Q toroidal microcavities for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005).
[CrossRef]

H. Goto, and K. Ichimura, "Upper bound for the success probability of cavity-mediated adiabatic transfer in the presence of dissipation," Phys. Rev. A 77, 013816 (2008).
[CrossRef]

H. Goto, and K. Ichimura, "Condition for fault-tolerant quantum computation with a cavity-QED scheme," Phys. Rev. A 82, 032311 (2010).
[CrossRef]

H. Goto, and K. Ichimura, "Expectation-value approach to photon statistics in cavity QED," Phys. Rev. A 70, 023815 (2004) (and references therein).
[CrossRef]

H. Goto, and K. Ichimura, "Population transfer via stimulated Raman adiabatic passage in a solid," Phys. Rev. A 74, 053410 (2006).
[CrossRef]

H. Goto, and K. Ichimura, "Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal," Phys. Rev. A 75, 033404 (2007).
[CrossRef]

K. Ichimura, K. Yamamoto, and N. Gemma, "Evidence for electromagnetically induced transparency in a solid medium," Phys. Rev. A 58, 4116-4120 (1998).
[CrossRef]

C. Greiner, B. Boggs, and T. W. Mossberg, "Frustrated pulse-area quantization in accelerated superradiant atom cavity systems," Phys. Rev. A 67, 063811 (2003).
[CrossRef]

K. Ichimura, and H. Goto, "Normal-mode coupling of rare-earth-metal ions in a crystal to a macroscopic optical cavity mode," Phys. Rev. A 74, 033818 (2006).
[CrossRef]

D. L. McAuslan, J. J. Longdell, and M. J. Sellars, "Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic cavities: What you can do with a weak oscillator," Phys. Rev. A 80, 062307 (2009).
[CrossRef]

S. E. Beavan, E. Fraval, M. J. Sellars, and J. J. Longdell, "Demonstration of the reduction of decoherent errors in a solid-state qubit using dynamic decoupling techniques," Phys. Rev. A 80, 032308 (2009).
[CrossRef]

Phys. Rev. B (4)

A. L. Alexander, R. Lauro, A. Louchet, T. Chanelière, and J. L. Le Gouët, "Stimulated Raman adiabatic passage in Tm3+:YAG," Phys. Rev. B 78, 144407 (2008).
[CrossRef]

E. Baldit, K. Bencheikh, P. Monnier, S. Briaudeau, J. A. Levenson, V. Crozatier, I. Lorgeré, F. Bretenaker, J. L. Le Gouët, O. Guillot-Noël, and Ph. Goldner, "Identification of Λ-like systems in Er3+:Y2SiO5 and observation of electromagnetically induced transparency," Phys. Rev. B 81, 144303 (2010).
[CrossRef]

R. W. Equall, R. L. Cone, and R. M. Macfarlane, "Homogeneous broadening and hyperfine structure of optical transitions in Pr3+:Y2SiO5," Phys. Rev. B 52, 3963-3969 (1995).
[CrossRef]

M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, "Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5," Phys. Rev. B 70, 214116 (2004).
[CrossRef]

Phys. Rev. Lett. (8)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of Ultraslow and Stored Light Pulses in a Solid," Phys. Rev. Lett. 88, 023602 (2001).
[CrossRef]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

J. Klein, F. Beil, and T. Halfmann, "Robust Population Transfer by Stimulated Raman Adiabatic Passage in a Pr3+:Y2SiO5," Phys. Rev. Lett. 99, 113003 (2007).
[CrossRef] [PubMed]

M. Sabooni, F. Beaudoin, A. Walther, N. Lin, A. Amari, M. Huang, and S. Kröll, "Storage and Recall of Weak Coherent Optical Pulses with an Efficiency of 25%," Phys. Rev. Lett. 105, 060501 (2010).
[CrossRef] [PubMed]

J. J. Longdell, M. J. Sellars, and N. B. Manson, "Demonstration of conditional quantum phase shift between ions in a solid," Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

C. Greiner, B. Boggs, and T. W. Mossberg, "Superradiant Emission Dynamics of an Optically Thin Material Sample in a Short-Decay-Time Optical Cavity," Phys. Rev. Lett. 85, 3793-3796 (2000).
[CrossRef] [PubMed]

C. Greiner, T. Wang, T. Loftus, and T. W. Mossberg, "Instability and Pulse Area Quantization in Accelerated Superradiant Atom-Cavity Systems," Phys. Rev. Lett. 87, 253602 (2001).
[CrossRef] [PubMed]

E. Fraval, M. J. Sellars, and J. J. Longdell, "Dynamic Decoherence Control of a Solid-State Nuclear-Quadrupole Qubit," Phys. Rev. Lett. 95, 030506 (2005).
[CrossRef] [PubMed]

Other (3)

Spectroscopy of Solids Containing Rare-Earth Ions, edited by A. A. Kaplyanskii and R. M. Macfarlane (North-Holland, Amsterdam, 1987).

C. Q. Electrodynamics, edited by P. R. Berman, Adv. At. Mol. Opt. Phys. Suppl. 2 (Academic Press, San Diego, 1994).

A. Yariv, Optical Electronics in Modern Communications, Fifth Edition (Oxford University Press, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 2
Fig. 2

Measured transmission (a) and reflection (b) spectra of Sample 1. The smooth curves are the fitting ones. The polarization is parallel to the D1 axis. The wavelength is 606 nm. The laser is incident on the plain mirror.

Fig. 1
Fig. 1

Experimental setup. L: coupling lens. BS: beamsplitter. PM: plane mirror. SM: spherical mirror. DT: photodetector for transmission. DR: photodetector for reflection. DI: photodetector for input. HWP: half-wave plate.

Fig. 3
Fig. 3

na(w) on a log-log scale. See the text for the parameter setting.

Fig. 4
Fig. 4

Model for a monolithic Fabry-Perot cavity. M1 and M2 are the cavity mirrors. L: bulk loss on the path from M1 (M2) to M2 (M1). θ: phase shift from M1 (M2) to M2 (M1). T1 and T2 : transmittances of M1 and M2, respectively. R1 and R2 : reflectances of M1 and M2, respectively. L1 and L2 : mirror losses of M1 and M2, respectively. They satisfy L1 = 1 – T1R1 and L2 = 1 – T2R2 by definition. E denotes the electric field.

Fig. 5
Fig. 5

Model for a whispering-gallery-mode cavity. P1 and P2 are prism couplers. L: bulk loss on the path from P1 (P2) to P2 (P1). θ: phase shift from P1 (P2) to P2 (P1). T1, R1, and L1 are the transmittance, reflectance, and loss between the cavity and P1, respectively. T2, R2, and L2 are the transmittance, reflectance, and loss between the cavity and P2, respectively. By definition, L1 = 1 – T1R1 and L2 = 1 – T2R2. E denotes the electric field.

Tables (3)

Tables Icon

Table 1 Sample data. See the text for the sample design. “Radius” means curvature radius of spherical mirror. The reflectances are design values, not measured values

Tables Icon

Table 2 Results for Sample 1. WL: wavelength. Pol: polarization (“D1” means the polarization is parallel to the D1 axis of YSO). FWHM: full width at half maximum of transmission spectrum (2ν0). F: finesse. Lin: intracavity loss (± denotes the statistical error estimated using the standard errors of ν0, νFSR, P1, D1, P2, and D2 determined by measurements repeated three times). T1 and T2 are the transmittances of the plain and spherical mirrors, respectively. C1 and C2 are the coupling efficiencies in the cases of the incidences on the plain and spherical mirrors, respectively

Tables Icon

Table 3 Results for Sample 2. See the caption of Table 2 for details

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

Transmission spectrum : S T 1 ( ν ) = P 1 ν 0 2 ν 2 + ν 0 2 ,
Reflection spectrum : S R 1 ( ν ) = 1 D 1 ν 0 2 ν 2 + ν 0 2 ,
F = ν FSR 2 ν 0 .
Transmission spectrum : S T 2 ( ν ) = P 2 ν 0 2 ν 2 + ν 0 2 ,
Reflection spectrum : S R 2 ( ν ) = 1 D 2 ν 0 2 ν 2 + ν 0 2 .
L in + T 1 + T 2 = 2 π F ,
P 1 L in + ( P 1 D 1 ) T 2 = 0 ,
P 2 L in + ( P 2 D 2 ) T 1 = 0 .
C 1 = P 1 ( 2 π / F ) 2 4 T 1 T 2 ,
C 2 = P 2 ( 2 π / F ) 2 4 T 1 T 2 .
n a = κ γ g 2 ,
F p = 4 C 1 = 4 n a .
κ = π ν FSR F = c ( L in + T 1 + T 2 ) 4 n l c > c L in 4 n l c ,
g = μ n ω c 2 h ¯ ɛ 0 V = 2 μ n w c h ¯ ɛ 0 l c λ c ,
n a ( w ) = h ¯ ɛ 0 n γ λ c L in 16 μ 2 w 2 .
E 1 = n 1 n 2 t 1 e i ϕ 1 E I r 1 e i ϕ 1 E 4 ,
E 2 = 1 L e i θ E 1 ,
E 3 = r 2 e i ϕ 2 E 2 ,
E 4 = 1 L e i θ E 3 ,
E T = n 2 n 1 t 2 * e i ϕ 2 E 2 ,
E R = n 2 n 1 t 1 * e i ϕ 1 E 4 + r 1 * e i ϕ 1 E I ,
S T 1 ( θ ) = | E T ( θ ) E I | 2 = T 1 T 2 ( 1 L ) | 1 ( 1 L ) R 1 R 2 e 2 i θ | 2 ,
S R 1 ( θ ) = | E R ( θ ) E I | 2 = | R 1 ( 1 L 1 ) ( 1 L ) R 2 e 2 i θ | 2 | 1 ( 1 L ) R 1 R 2 e 2 i θ | 2 ,
S T 1 ( θ ) 4 T 1 T 2 ( L in + T 1 + T 2 ) 2 + ( 4 θ ) 2 ,
S R 1 ( θ ) ( L in + T 2 T 1 ) 2 + ( 4 θ ) 2 ( L in + T 1 + T 2 ) 2 + ( 4 θ ) 2 ,
L in 2 L + L 1 + L 2 .
S T 1 ( θ ) = C 1 4 T 1 T 2 ( L in + T 1 + T 2 ) 2 + ( 4 θ ) 2 ,
S R 1 ( θ ) = C 1 ( L in + T 2 T 1 ) 2 + ( 4 θ ) 2 ( L in + T 1 + T 2 ) 2 + ( 4 θ ) 2 + ( 1 C 1 ) = 1 C 1 4 T 1 ( L in + T 2 ) ( L in + T 1 + T 2 ) 2 + ( 4 θ ) 2 .
F = 2 π L in + T 1 + T 2 ,
P 1 = C 1 4 T 1 T 2 ( L in + T 1 + T 2 ) 2 = 4 C 1 T 1 T 2 ( 2 π / F ) 2 ,
D 1 = C 1 4 T 1 ( L in + T 2 ) ( L in + T 1 + T 2 ) 2 = L in + T 2 T 2 P 1 .
P 2 = 4 C 2 T 1 T 2 ( 2 π / F ) 2 ,
D 2 = L in + T 2 T 2 P 2 .

Metrics