Abstract

We experimentally demonstrate the phase-transparent optical data exchange between two differential quadrature phase-shift keying (DQPSK) signals by exploiting the signal depletion effect of non-degenerate four-wave mixing (FWM) in a highly nonlinear fiber (HNLF). Identical phase modulation is applied to the two pumps to suppress the stimulated Brillouin scattering (SBS) effect and enable the pump phase cancellation in the exchanged signals. Optical data exchange of 100-Gbit/s return-to-zero DQPSK (RZ-DQPSK) signals is implemented with a power penalty of less than 5 dB at a bit-error rate (BER) of 10−9. Moreover, we investigate the impact of the temporal pump phase misalignment on the exchange performance and the dynamic range of the input signal power for the 100-Gbit/s RZ-DQPSK data exchange. The tolerance of the temporal pump phase misalignment is assessed to be +/−2 ps. An approximate 20-dB dynamic range of the input signal power is achieved.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
    [CrossRef]
  2. T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
    [CrossRef]
  3. H. S. Hamza and J. S. Deogun, “Wavelength-exchanging cross connects (WEX) - A new class of photonic cross-connect architectures,” J. Lightwave Technol. 24(3), 1101–1111 (2006).
    [CrossRef]
  4. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
    [CrossRef]
  5. K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
    [CrossRef]
  6. Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
    [CrossRef]
  7. R. W. L. Fung and K. Y. Henry, “Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
    [CrossRef]
  8. M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
    [CrossRef]
  9. C. H. Kwok, B. P. P. Kuo, and K. K. Y. Wong, “Pulsed pump wavelength exchange for high speed signal de-multiplexing,” Opt. Express 16(15), 10894–10899 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-10894 .
    [CrossRef] [PubMed]
  10. J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett. 35(17), 2979–2981 (2010).
    [CrossRef] [PubMed]
  11. J. Wang, S. R. Nuccio, X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J.-Y. Yang, Y. Yue, and A. E. Willner, “40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide,” Opt. Lett. 35(7), 1067–1069 (2010).
    [CrossRef] [PubMed]
  12. M. Daikoku, I. Morita, H. Taga, H. Tanaka, T. Kawanishi, T. Sakamoto, T. Miyazaki, and T. Fujita, “100-Gb/s DQPSK transmission experiment without OTDM for 100G Ethernet transport,” J. Lightwave Technol. 25(1), 139–145 (2007).
    [CrossRef]
  13. J. Wang, S. R. Nuccio, H. Huang, X. Wang, O. F. Yilmaz, X. Wu, J.-Y. Yang, Y. Yue, and A. E. Willner, “Demonstration of 100-Gbit/s DQPSK data exchange between two different wavelength channels using parametric depletion in a highly nonlinear fiber,” Proc. ECOC 2010, Torino, Italy, paper Mo.1.A.4 (2010).
  14. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
    [CrossRef]

2010

2009

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

2008

2007

M. Daikoku, I. Morita, H. Taga, H. Tanaka, T. Kawanishi, T. Sakamoto, T. Miyazaki, and T. Fujita, “100-Gb/s DQPSK transmission experiment without OTDM for 100G Ethernet transport,” J. Lightwave Technol. 25(1), 139–145 (2007).
[CrossRef]

R. W. L. Fung and K. Y. Henry, “Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

2006

2004

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

2003

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

2002

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

2000

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[CrossRef]

1997

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Bakhtiari, Z.

Brar, K.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Centanni, J. C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Chraplyvy, A. R.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Dai, Y. H.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Daikoku, M.

Deogun, J. S.

Fazal, I.

Fujita, T.

Fung, R. W. L.

R. W. L. Fung and K. Y. Henry, “Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

Gao, Y.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Goh, C. S.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Hamza, H. S.

He, S. L.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Headley, C.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Henry, K. Y.

R. W. L. Fung and K. Y. Henry, “Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

Jopson, R. M.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Jorgensen, C. G.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Kawanishi, T.

Kazovsky, L. G.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Kikuchi, K.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Kuo, B. P. P.

Kwok, C. H.

Marhic, M. E.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

McKinstrie, C. J.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Miyazaki, T.

Mori, K.

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Morita, I.

Mukherjee, B.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[CrossRef]

Nuccio, S. R.

Radic, S.

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

Sakamoto, T.

Saruwatari, M.

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Set, S. Y.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Shen, M. Z.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

Shu, C.

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

Taga, H.

Takara, H.

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

Tanaka, H.

Tanemura, T.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Uesaka, K.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Wang, J.

Willner, A. E.

Wong, K. K. Y.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

C. H. Kwok, B. P. P. Kuo, and K. K. Y. Wong, “Pulsed pump wavelength exchange for high speed signal de-multiplexing,” Opt. Express 16(15), 10894–10899 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-10894 .
[CrossRef] [PubMed]

Wong, K. K.-Y.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

Wu, X.

Xu, X.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

Yang, J.-Y.

Yilmaz, O. F.

Yue, Y.

Yuk, T. I.

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

Zhang, L.

Electron. Lett.

K. Mori, H. Takara, and M. Saruwatari, “Wavelength interchange with an optical parametric loop mirror,” Electron. Lett. 33(6), 520–522 (1997).
[CrossRef]

IEEE J. Sel. Areas Comm.

B. Mukherjee, “WDM optical communication networks: progress and challenges,” IEEE J. Sel. Areas Comm. 18(10), 1810–1824 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: Theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 8(3), 560–568 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Tanemura, C. S. Goh, K. Kikuchi, and S. Y. Set, “Highly efficient arbitrary wavelength conversion within entire C-band based on nondegenerate fiber four-wave mixing,” IEEE Photon. Technol. Lett. 16(2), 551–553 (2004).
[CrossRef]

Y. Gao, Y. H. Dai, C. Shu, and S. L. He, “Wavelength interchange of phase-shift-keying signal,” IEEE Photon. Technol. Lett. 22(11), 838–840 (2010).
[CrossRef]

R. W. L. Fung and K. Y. Henry, “Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett. 19(22), 1846–1848 (2007).
[CrossRef]

M. Z. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1591–1593 (2009).
[CrossRef]

S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, C. G. Jorgensen, K. Brar, and C. Headley, “Selective suppression of idler spectral broadening in two-pump parametric architectures,” IEEE Photon. Technol. Lett. 15(5), 673–675 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

J. Wang, S. R. Nuccio, H. Huang, X. Wang, O. F. Yilmaz, X. Wu, J.-Y. Yang, Y. Yue, and A. E. Willner, “Demonstration of 100-Gbit/s DQPSK data exchange between two different wavelength channels using parametric depletion in a highly nonlinear fiber,” Proc. ECOC 2010, Torino, Italy, paper Mo.1.A.4 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Concept and principle of non-degenerate FWM based signal depletion and data exchange. (a) Signal 1 (S1) depletion. (b) Signal 2 (S2) depletion. (c) S1, S2 data exchange.

Fig. 2
Fig. 2

Experimental setup for 100-Gbit/s DQPSK data exchange. Rx: direct detection receiver.

Fig. 3
Fig. 3

Measured spectra for 100-Gbit/s DQPSK data exchange. (a) Depletion of S1 (S1: ON, S2: OFF, P1: ON, P2: ON); (b) Depletion of S2 (S1: OFF, S2: ON, P1: ON, P2: ON). (c) Data exchange between S1 and S2 (S1: ON, S2: ON, P1: ON, P2: ON).

Fig. 4
Fig. 4

Demodulated waveforms (Ch. I and Ch. Q) for 100-Gbit/s DQPSK data exchange. (a1)(a2) S1 before data exchange (P1: OFF, P2: OFF). (b1)(b2) S2 before data exchange (P1: OFF, P2: OFF). (c1)(c2) S1 after wavelength conversion (WC: S2 to S1) (S1: OFF, S2: ON, P1: ON, P2: ON). (d1)(d2) S1 after data exchange (Ex.: S2 to S1) (S1: ON, S2: ON, P1: ON, P2: ON). (e1)(e2) S2 after wavelength conversion (WC: S1 to S2) (S1: ON, S2: OFF, P1: ON, P2: ON). (f1)(f2) S2 after data exchange (Ex.: S1 to S2) (S1: ON, S2: ON, P1: ON, P2: ON). (a1)-(f1) Ch. I. (a2)-(f2) Ch. Q.

Fig. 5
Fig. 5

Constellation diagrams for 100-Gbit/s DQPSK data exchange. (a) S1: back-to-back. (b) S2: back-to-back. (c) S1 after wavelength conversion (WC: S2 to S1) (S1: OFF, S2: ON). (d) S2 after wavelength conversion (WC: S1 to S2) (S1: ON, S2: OFF). (e) S1 after data exchange (Ex.: S2 to S1) (S1: ON, S2: ON). (f) S2 after data exchange (Ex.: S1 to S2) (S1: ON, S2: ON).

Fig. 6
Fig. 6

BER curves and balanced eye diagrams for the 100-Gbit/s DQPSK data exchange.

Fig. 7
Fig. 7

Impact of pump phase misalignment on the exchange performance.

Fig. 8
Fig. 8

Dynamic range of the input signal power for 100-Gbit/s DQPSK data exchange.

Metrics