Abstract

Optical regenerative nonreturn-to-zero (NRZ) to return-to-zero (RZ) format conversion using a lithium niobate phase modulator and a lithium niobate intensity modulator is proposed and demonstrated. The key advantage of the proposed format converter is that the converted RZ signal has a very small pulse width, which can be multiplexed to a higher bit rate using optical time division multiplexing technology. The operation can greatly reduce the timing jitter of the degraded NRZ signal due to the regenerative property of the proposed scheme. Besides, the format converter can also support multi-channel operation. An experiment is performed with the feasibility of the scheme demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
    [CrossRef]
  2. C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
    [CrossRef]
  3. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
    [CrossRef]
  4. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15(6), 2907–2914 (2007).
    [CrossRef] [PubMed]
  5. X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
    [CrossRef]
  6. H. N. Tan, M. Matsuura, and N. Kishi, “Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches,” Opt. Express 16(23), 19063–19071 (2008).
    [CrossRef]
  7. T. Ye, C. Yan, Y. Lu, F. Liu, and Y. Su, “All-optical regenerative NRZ-to-RZ format conversion using coupled ring-resonator optical waveguide,” Opt. Express 16(20), 15325–15331 (2008).
    [CrossRef] [PubMed]
  8. L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
    [CrossRef]
  9. S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
    [CrossRef]
  10. Y. Yu, X. Zhang, J. B. Rosas-Fernández, D. Huang, R. V. Penty, and I. H. White, “Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s,” Opt. Express 17(5), 3964–3969 (2009).
    [CrossRef] [PubMed]
  11. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
    [CrossRef]
  12. T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
    [CrossRef]
  13. J. van Howe, J. Hansryd, and C. Xu, “Multiwavelength pulse generator using time-lens compression,” Opt. Lett. 29(13), 1470–1472 (2004).
    [CrossRef] [PubMed]
  14. M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
    [CrossRef]
  15. M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, “10 Gbit/s soliton data transmission over one million kilometres,” Electron. Lett. 27(14), 1270–1272 (1991).
    [CrossRef]
  16. L. F. Mollenauer, and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions,” CLEO’ 2002, Paper CPDB1–1.

2010

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[CrossRef]

2009

2008

2007

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu, and P. Shum, “40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter,” Opt. Express 15(6), 2907–2914 (2007).
[CrossRef] [PubMed]

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

2006

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

2004

2003

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
[CrossRef]

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

1996

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[CrossRef]

1995

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

1991

M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, “10 Gbit/s soliton data transmission over one million kilometres,” Electron. Lett. 27(14), 1270–1272 (1991).
[CrossRef]

1988

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
[CrossRef]

Doi, M.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

Dong, J.

Dong, Y.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Ellis, A. D.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

Fu, S.

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

Gao, Y. Z.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
[CrossRef]

Hansryd, J.

Huang, D.

Huo, L.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Kawai, M.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

Kishi, N.

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

Kubota, H.

M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, “10 Gbit/s soliton data transmission over one million kilometres,” Electron. Lett. 27(14), 1270–1272 (1991).
[CrossRef]

Kwok, C. H.

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

Lin, C.

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

Liu, F.

Lou, C. Y.

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

Lu, Y.

Manning, R. J.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

Matsuura, M.

Mishra, A. K.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

Nagatsuma, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[CrossRef]

Nakazawa, M.

M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, “10 Gbit/s soliton data transmission over one million kilometres,” Electron. Lett. 27(14), 1270–1272 (1991).
[CrossRef]

Norte, D.

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

Otsuji, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[CrossRef]

Pan, S. L.

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[CrossRef]

Park, E.

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

Penty, R. V.

Prucnal, P. R.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
[CrossRef]

Rosas-Fernández, J. B.

Sano, E.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[CrossRef]

Shum, P.

Su, Y.

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

Sugiyama, M.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

Suzuki, K.

M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, “10 Gbit/s soliton data transmission over one million kilometres,” Electron. Lett. 27(14), 1270–1272 (1991).
[CrossRef]

Tan, H. N.

Tanaka, K.

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

van Howe, J.

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
[CrossRef]

Webb, R. P.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

White, I. H.

Willner, A. E.

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

Xu, C.

Xu, J.

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
[CrossRef]

Yaita, M.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[CrossRef]

Yamada, E.

M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, “10 Gbit/s soliton data transmission over one million kilometres,” Electron. Lett. 27(14), 1270–1272 (1991).
[CrossRef]

Yan, C.

Yang, X.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

Yao, J. P.

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[CrossRef]

Ye, T.

Yu, Y.

Zhang, X.

Electron. Lett.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43(16), 890–892 (2007).
[CrossRef]

M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, “10 Gbit/s soliton data transmission over one million kilometres,” Electron. Lett. 27(14), 1270–1272 (1991).
[CrossRef]

IEEE J. Quantum Electron.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electrooptic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80-Gb/s highly extinctive electrooptic pulse pattern generation,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[CrossRef]

M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for broadband optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 745–750 (2006).
[CrossRef]

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” IEEE J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[CrossRef]

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Norte, E. Park, and A. E. Willner, “All-optical TDM-to-WDM data format conversion in a dynamically reconfigurable WDM network,” IEEE Photon. Technol. Lett. 7(8), 920–922 (1995).
[CrossRef]

L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, “Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[CrossRef]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photon. Technol. Lett. 15(2), 308–310 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

L. F. Mollenauer, and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul DWDM dispersion managed soliton transmissions,” CLEO’ 2002, Paper CPDB1–1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The schematic of the proposed NRZ-to-RZ format converter based on cascaded LiNbO3 modulators. Dotted line: chirp of the signal; solid line: waveform of the signal.

Fig. 2
Fig. 2

The minimum pulse width and corresponding optimal DCF length as a function of α.

Fig. 3
Fig. 3

Time-bandwidth product and pedestal of the converted RZ signal as a function of α.

Fig. 4
Fig. 4

Eye diagrams of (a) the input NRZ signal, (b) the converted RZ signal, (c) the multiplexed 40-Gb/s signal and (d) the RZ signal after 80-km transmission. Eye diagrams of (e) the input NRZ signal after 80-km transmission, (f) the converted RZ signal, (g) the multiplexed 40-Gb/s signal and (h) the RZ signal after 40-km transmission.

Fig. 5
Fig. 5

BER performance of the single-channel format conversion.

Fig. 6
Fig. 6

(a)(b) input NRZ signals (c)(d) converted RZ signals and (e)(f) OTDM signals of Ch.1 and Ch.2 respectively.

Fig. 7
Fig. 7

Optical spectral of the dual-channel converted RZ signals.

Fig. 8
Fig. 8

The BER result and eye diagrams of the dual-channel format conversion.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E o u t ( t ) = E i n ( t ) exp [ i α sin ( ω m t ) ] cos [ β sin ( ω m t + τ ) + φ / 2 ]
α = π V m 1 V π 1 ,       β = π 2 V m 2 V π 2
A z + i β 2 2 A 2 T 2 + i α L 2 = i γ | A | 2
p = 1 P G P R Z

Metrics