Abstract

We report Monte Carlo simulations based on the Lebwohl-Lasher model for characterizing the molecular director configuration in a nematic liquid crystal cell presenting periodical boundary anchoring conditions. We demonstrate the molecular orientation and spatial behaviour, while profiling the local order parameter distribution for the proposed confining geometry, as well as the boundary and interface interaction fields propagation through the namatic bulk for various temperatures in the proximity of the nematic-isotropic transition. Simulations were also performed concerning with the light passing through the planar and homeotropic periodical regions of the nematic cell and a mapping of the transmitted intensity was obtained for several ambient temperatures. The boundary constraints and the selected periodical geometry of the simulated system play an extremely important role for the demonstrated optical and orientational properties of the liquid crystalline material.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1995).
  2. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1993).
  3. P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (Wiley, 2009).
  4. A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
    [CrossRef]
  5. N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
    [CrossRef]
  6. D. W. Berremann, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
    [CrossRef]
  7. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
    [CrossRef]
  8. F. C. Frank, “On the Theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
    [CrossRef]
  9. M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)
  10. D. Frenkel, and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2001).
  11. M. E. J. Newman, and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)
  12. P. Pasini, C. Zannoni, and S. Zumer, Computer Simulations of Liquid Crystals and Polymers (Springer, 2005).
  13. D. P. Landau, and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000).
  14. E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).
  15. E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
    [CrossRef]
  16. C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998).
    [CrossRef]
  17. C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001).
    [CrossRef]
  18. C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
    [CrossRef] [PubMed]
  19. A. M. Smondyrev and R. A. Pelcovits, “Nematic Structures in Cylindrical Cavities,” Liq. Cryst. 26(2), 235–240 (1999).
    [CrossRef]
  20. E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
    [CrossRef] [PubMed]
  21. C. Berlic, E. Barna, and C. Ciucu, “Monte Carlo Simulation of a Nematic Liquid Crystal Cell with a Hemispheric Defect on One Electrode,” J. Optoelectron. Adv. Mater. 9, 3854–3859 (2007).
  22. C. Berlic and V. Barna, “Nematic Director Distribution of a Liquid Crystalline System Presenting a Cylindrical Defect,” Journal J. Optoelectron. Adv. Mater. 12, 1427–1432 (2010).
  23. P. Pasini, and C. Zannoni, eds., Advances in the Computer Simulations of Liquid Crystals (Kluver, Dordrecht, 2000).
  24. D. W. Berreman, “Liquid-Crystal Twist Cell Dynamics with Backflow,” J. Appl. Phys. 46(9), 3746–3751 (1975).
    [CrossRef]
  25. M. Schadt and W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [CrossRef]
  26. M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-Domain Liquid-Crystal Displays with Wide Viewing Angles,” Nature 381(6579), 212–215 (1996).
    [CrossRef]
  27. P. A. Lebwohl and G. Lasher, “Nematic Liquid Crystal Order – A Monte Carlo Calculation,” Phys. Rev. A 6(1), 426–429 (1972).
    [CrossRef]
  28. J. A. Schellman, “Polarization Modulation Spectroscopy”, in Polarized Spectroscopy of Ordered Systems, B. Samori’ and E.W. Thulstrup, eds. (Kluwer, Dordrecht, 1988).
  29. G. W. Gray, K. J. Harrison, and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Electron. Lett. 9(6), 130–131 (1973).
    [CrossRef]
  30. T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007), Chap. 8.

2010

C. Berlic and V. Barna, “Nematic Director Distribution of a Liquid Crystalline System Presenting a Cylindrical Defect,” Journal J. Optoelectron. Adv. Mater. 12, 1427–1432 (2010).

2007

C. Berlic, E. Barna, and C. Ciucu, “Monte Carlo Simulation of a Nematic Liquid Crystal Cell with a Hemispheric Defect on One Electrode,” J. Optoelectron. Adv. Mater. 9, 3854–3859 (2007).

2004

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

2003

A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
[CrossRef]

C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
[CrossRef] [PubMed]

2001

C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001).
[CrossRef]

2000

E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).

1999

A. M. Smondyrev and R. A. Pelcovits, “Nematic Structures in Cylindrical Cavities,” Liq. Cryst. 26(2), 235–240 (1999).
[CrossRef]

1998

C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998).
[CrossRef]

1996

M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-Domain Liquid-Crystal Displays with Wide Viewing Angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

1995

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
[CrossRef]

1994

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
[CrossRef] [PubMed]

1992

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

1975

D. W. Berreman, “Liquid-Crystal Twist Cell Dynamics with Backflow,” J. Appl. Phys. 46(9), 3746–3751 (1975).
[CrossRef]

1973

G. W. Gray, K. J. Harrison, and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Electron. Lett. 9(6), 130–131 (1973).
[CrossRef]

1972

P. A. Lebwohl and G. Lasher, “Nematic Liquid Crystal Order – A Monte Carlo Calculation,” Phys. Rev. A 6(1), 426–429 (1972).
[CrossRef]

D. W. Berremann, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

1971

M. Schadt and W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

1958

F. C. Frank, “On the Theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Alexandreanu, D.

E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).

Alexandreanu, I.

E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).

Alexe-Ionescu, A. L.

A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
[CrossRef]

Barna, E.

C. Berlic, E. Barna, and C. Ciucu, “Monte Carlo Simulation of a Nematic Liquid Crystal Cell with a Hemispheric Defect on One Electrode,” J. Optoelectron. Adv. Mater. 9, 3854–3859 (2007).

Barna, E. S.

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
[CrossRef]

Barna, V.

C. Berlic and V. Barna, “Nematic Director Distribution of a Liquid Crystalline System Presenting a Cylindrical Defect,” Journal J. Optoelectron. Adv. Mater. 12, 1427–1432 (2010).

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

Berggren, E.

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
[CrossRef] [PubMed]

Berlic, C.

C. Berlic and V. Barna, “Nematic Director Distribution of a Liquid Crystalline System Presenting a Cylindrical Defect,” Journal J. Optoelectron. Adv. Mater. 12, 1427–1432 (2010).

C. Berlic, E. Barna, and C. Ciucu, “Monte Carlo Simulation of a Nematic Liquid Crystal Cell with a Hemispheric Defect on One Electrode,” J. Optoelectron. Adv. Mater. 9, 3854–3859 (2007).

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).

Berreman, D. W.

D. W. Berreman, “Liquid-Crystal Twist Cell Dynamics with Backflow,” J. Appl. Phys. 46(9), 3746–3751 (1975).
[CrossRef]

Berremann, D. W.

D. W. Berremann, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

Chiccoli, C.

C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
[CrossRef] [PubMed]

C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001).
[CrossRef]

C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
[CrossRef] [PubMed]

Chigrinov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Ciucu, C.

C. Berlic, E. Barna, and C. Ciucu, “Monte Carlo Simulation of a Nematic Liquid Crystal Cell with a Hemispheric Defect on One Electrode,” J. Optoelectron. Adv. Mater. 9, 3854–3859 (2007).

Frank, F. C.

F. C. Frank, “On the Theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Gatin, E.

E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).

Gray, G. W.

G. W. Gray, K. J. Harrison, and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Electron. Lett. 9(6), 130–131 (1973).
[CrossRef]

Guzzeti, S.

C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001).
[CrossRef]

C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998).
[CrossRef]

Harrison, K. J.

G. W. Gray, K. J. Harrison, and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Electron. Lett. 9(6), 130–131 (1973).
[CrossRef]

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Ionescu, A. Th.

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
[CrossRef]

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Lasher, G.

P. A. Lebwohl and G. Lasher, “Nematic Liquid Crystal Order – A Monte Carlo Calculation,” Phys. Rev. A 6(1), 426–429 (1972).
[CrossRef]

Lebwohl, P. A.

P. A. Lebwohl and G. Lasher, “Nematic Liquid Crystal Order – A Monte Carlo Calculation,” Phys. Rev. A 6(1), 426–429 (1972).
[CrossRef]

Nash, J. A.

G. W. Gray, K. J. Harrison, and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Electron. Lett. 9(6), 130–131 (1973).
[CrossRef]

Pasini, P.

C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
[CrossRef] [PubMed]

C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001).
[CrossRef]

C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
[CrossRef] [PubMed]

Pelcovits, R. A.

A. M. Smondyrev and R. A. Pelcovits, “Nematic Structures in Cylindrical Cavities,” Liq. Cryst. 26(2), 235–240 (1999).
[CrossRef]

Popescu, A.

E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).

Sarlah, A.

C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
[CrossRef] [PubMed]

Scaramuzza, N.

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
[CrossRef]

Schadt, M.

M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-Domain Liquid-Crystal Displays with Wide Viewing Angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

M. Schadt and W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Schuster, A.

M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-Domain Liquid-Crystal Displays with Wide Viewing Angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

Seiberle, H.

M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-Domain Liquid-Crystal Displays with Wide Viewing Angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

Semeria, F.

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
[CrossRef] [PubMed]

Smondyrev, A. M.

A. M. Smondyrev and R. A. Pelcovits, “Nematic Structures in Cylindrical Cavities,” Liq. Cryst. 26(2), 235–240 (1999).
[CrossRef]

Strangi, G.

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
[CrossRef]

Zannoni, C.

C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
[CrossRef] [PubMed]

C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001).
[CrossRef]

C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
[CrossRef]

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
[CrossRef] [PubMed]

Zumer, S.

C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Schadt and W. Helfrich, “Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[CrossRef]

Discuss. Faraday Soc.

F. C. Frank, “On the Theory of Liquid Crystals,” Discuss. Faraday Soc. 25, 19–28 (1958).
[CrossRef]

Electron. Lett.

G. W. Gray, K. J. Harrison, and J. A. Nash, “New Family of Nematic Liquid Crystals for Displays,” Electron. Lett. 9(6), 130–131 (1973).
[CrossRef]

Int. J. Mod. Phys. C

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “A Monte Carlo Simulation of a Twisted Nematic Liquid Crystal Display,” Int. J. Mod. Phys. C 6(1), 135–141 (1995).
[CrossRef]

C. Chiccoli, P. Pasini, S. Guzzeti, and C. Zannoni, “A Monte Carlo Simulation of In-Plane Switching Liquid Crystal Display,” Int. J. Mod. Phys. C 9(3), 409–419 (1998).
[CrossRef]

J. Appl. Phys.

D. W. Berreman, “Liquid-Crystal Twist Cell Dynamics with Backflow,” J. Appl. Phys. 46(9), 3746–3751 (1975).
[CrossRef]

J. Optoelectron. Adv. Mater.

C. Berlic, E. Barna, and C. Ciucu, “Monte Carlo Simulation of a Nematic Liquid Crystal Cell with a Hemispheric Defect on One Electrode,” J. Optoelectron. Adv. Mater. 9, 3854–3859 (2007).

J. Phys. Chem. B

A. L. Alexe-Ionescu, A. Th. Ionescu, E. S. Barna, N. Scaramuzza, and G. Strangi, “Role of Surface Order on the Total Electric Conduction in NLC Samples,” J. Phys. Chem. B 107(23), 5487–5490 (2003).
[CrossRef]

N. Scaramuzza, C. Berlic, E. S. Barna, G. Strangi, V. Barna, and A. Th. Ionescu, “Molecular Simulation of the Free Surface Order in NLC Samples,” J. Phys. Chem. B 108(10), 3207–3210 (2004).
[CrossRef]

Journal J. Optoelectron. Adv. Mater.

C. Berlic and V. Barna, “Nematic Director Distribution of a Liquid Crystalline System Presenting a Cylindrical Defect,” Journal J. Optoelectron. Adv. Mater. 12, 1427–1432 (2010).

Jpn. J. Appl. Phys.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2155–2164 (1992).
[CrossRef]

Liq. Cryst.

A. M. Smondyrev and R. A. Pelcovits, “Nematic Structures in Cylindrical Cavities,” Liq. Cryst. 26(2), 235–240 (1999).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

C. Chiccoli, S. Guzzeti, P. Pasini, and C. Zannoni, “Computer Simulations of Nematic Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 360(1), 119–129 (2001).
[CrossRef]

Nature

M. Schadt, H. Seiberle, and A. Schuster, “Optical Patterning of Multi-Domain Liquid-Crystal Displays with Wide Viewing Angles,” Nature 381(6579), 212–215 (1996).
[CrossRef]

Phys. Med.

E. Gatin, D. Alexandreanu, A. Popescu, C. Berlic, and I. Alexandreanu, “Correlations between permeability properties and pore-size distribution of the porous media “hydron” useful as contact lenses,” Phys. Med. XVI, 13–19 (2000).

Phys. Rev. A

P. A. Lebwohl and G. Lasher, “Nematic Liquid Crystal Order – A Monte Carlo Calculation,” Phys. Rev. A 6(1), 426–429 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

C. Chiccoli, P. Pasini, A. Sarlah, C. Zannoni, and S. Zumer, “Structures and transitions in thin hybrid nematic films: a Monte Carlo study,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(5), 050703 (2003).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

E. Berggren, C. Zannoni, C. Chiccoli, P. Pasini, and F. Semeria, “Computer simulations of nematic droplets with bipolar boundary conditions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(4), 2929–2939 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

D. W. Berremann, “Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal,” Phys. Rev. Lett. 28(26), 1683–1686 (1972).
[CrossRef]

Other

P. G. de Gennes, and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1995).

S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1993).

P. Yeh, and C. Gu, Optics of Liquid Crystal Displays (Wiley, 2009).

M. P. Allen, and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, 1989)

D. Frenkel, and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2001).

M. E. J. Newman, and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, 1999)

P. Pasini, C. Zannoni, and S. Zumer, Computer Simulations of Liquid Crystals and Polymers (Springer, 2005).

D. P. Landau, and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2000).

J. A. Schellman, “Polarization Modulation Spectroscopy”, in Polarized Spectroscopy of Ordered Systems, B. Samori’ and E.W. Thulstrup, eds. (Kluwer, Dordrecht, 1988).

P. Pasini, and C. Zannoni, eds., Advances in the Computer Simulations of Liquid Crystals (Kluver, Dordrecht, 2000).

T. Scharf, Polarized Light in Liquid Crystals and Polymers (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the initial state for the simulated liquid crystal system. The nematic liquid crystal molecules are confined in a glass sandwich type cell. A system of coordinates XYZ is assigned.

Fig. 2
Fig. 2

Components of the tensor order parameter for Z=12 at T*=9. Error bars sizes are of dimension of the symbols and were omitted. Lines are only guide to the eye.

Fig. 3(a)
Fig. 3(a)

(a) Map of QYY in the YOZ plane at T*=0.9.

Fig. 3(b)
Fig. 3(b)

(b) Map of Qzz in the YOZ plane at T*=0.9.

Fig. 4
Fig. 4

Qyy components of the tensor order parameter for z=12 at different temperatures. For T*=1.3 we have QYY=0, meaning that there is no order. Error bars sizes are of dimension of the symbols and were omitted. Lines are only guide to the eye.

Fig. 5(a)
Fig. 5(a)

(a) Map of the intensity of the transmitted light for T*=0.9 and λ=545nm.

Fig. 5(b)
Fig. 5(b)

(b) Map of the intensity of the transmitted light for T*=1.1 and λ=545nm.

Fig. 6
Fig. 6

Intensity of the transmitted light averaged along the OX axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U i j = ε i j P 2 ( θ i j )
Q α β = 1 n k = 1 n ( 3 2 s k α s k β 1 2 δ α β )
S = P O U T i = 2 N z 1 M i P I N S I N
I = I 0 2 sin 2 ( 2 φ ) sin 2 [ π d λ ( n e n o n e 2 sin 2 θ + n o 2 cos 2 θ n o ) ]

Metrics