Abstract

We investigate the near-field optical coupling between a single semiconductor nanocrystal (quantum dot) and a nanometer-scale plasmonic metal resonator using rigorous electrodynamic simulations. Our calculations show that the quantum dot produces a dip in both the extinction and scattering spectra of the surface-plasmon resonator, with a particularly strong change for the scattering spectrum. A phenomenological coupled-oscillator model is used to fit the calculation results and provide physical insight, revealing the roles of Fano interference and hybridization. The results indicate that it is possible to achieve nearly complete transparency as well as enter the strong-coupling regime for a single quantum dot in the near field of a metal nanostructure.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 135-169 (2008).
  2. X. Wu, Y. Sun, and M. Pelton, "Recombination rates for single colloidal quantum dots near a smooth metal film," Phys. Chem. Chem. Phys. 11, 5867-5870 (2009).
    [CrossRef] [PubMed]
  3. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
    [CrossRef] [PubMed]
  4. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
    [CrossRef]
  5. W. Zhang, A. O. Govorov, and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect," Phys. Rev. Lett. 97, 146804 (2006).
    [CrossRef] [PubMed]
  6. R. D. Artuso, and G. W. Bryant, "Optical response of strongly coupled quantum dot - metal nanoparticle systems: Double peaked Fano structure and bistability," Nano Lett. 8, 2106-2111 (2008).
    [CrossRef] [PubMed]
  7. J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
    [CrossRef]
  8. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
    [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  10. E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
    [CrossRef] [PubMed]
  11. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
    [CrossRef] [PubMed]
  12. M. Fleishhauer, A. Imamoglu, and J. P. Narangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
    [CrossRef]
  13. E. Waks, and J. Vuckovic, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
    [CrossRef] [PubMed]
  14. V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
    [CrossRef]
  15. M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
    [CrossRef] [PubMed]
  16. P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).
  17. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
    [CrossRef] [PubMed]
  18. A. Trugler, and U. Hohenester, "Strong coupling between a metallic nanoparticle and a single molecule," Phys. Rev. B 77, 115403 (2008).
    [CrossRef]
  19. C. de M. Donega, and R. Koole, "Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots," J. Phys. Chem. C 113, 6511-6520 (2009).
    [CrossRef]
  20. P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009).
    [CrossRef]
  21. S. A. Empedocles, and M. G. Bawendi, "Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots," J. Phys. Chem. B 103, 1826-1830 (1999).
    [CrossRef]
  22. S. H. Park, M. P. Casy, and J. P. Falk, "Nonlinear optical properties of CdSe quantum dots," J. Appl. Phys. 73, 8041-8045 (1993).
    [CrossRef]
  23. M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
    [CrossRef]
  24. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  25. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed. (Artech House, Boston, 2000).
  26. J. M. Montgomery, T.-W. Lee, and S. K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys. Condens. Matter 20, 323201 (2008).
    [CrossRef]
  27. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002).
    [CrossRef]
  28. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
    [CrossRef] [PubMed]
  29. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd Ed., (Wiley, New York, 1983).
  30. A. Nitzan, and L. E. Brus, "Theoretical model for enhanced photochemistry on rough surfaces," J. Chem. Phys. 75, 2205-2214 (1981).
    [CrossRef]
  31. J. Gersten, and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139-1152 (1981).
    [CrossRef]
  32. P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009).
    [CrossRef] [PubMed]
  33. L. E. Ocola, "Nanoscale geometry assisted proximity correction for electron beam direct write lithography," J. Vac. Sci. Technol. B 27, 2569-2571 (2009).
    [CrossRef]
  34. Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
    [CrossRef]

2010

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

2009

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

X. Wu, Y. Sun, and M. Pelton, "Recombination rates for single colloidal quantum dots near a smooth metal film," Phys. Chem. Chem. Phys. 11, 5867-5870 (2009).
[CrossRef] [PubMed]

C. de M. Donega, and R. Koole, "Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots," J. Phys. Chem. C 113, 6511-6520 (2009).
[CrossRef]

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009).
[CrossRef] [PubMed]

L. E. Ocola, "Nanoscale geometry assisted proximity correction for electron beam direct write lithography," J. Vac. Sci. Technol. B 27, 2569-2571 (2009).
[CrossRef]

2008

J. M. Montgomery, T.-W. Lee, and S. K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys. Condens. Matter 20, 323201 (2008).
[CrossRef]

A. Trugler, and U. Hohenester, "Strong coupling between a metallic nanoparticle and a single molecule," Phys. Rev. B 77, 115403 (2008).
[CrossRef]

R. D. Artuso, and G. W. Bryant, "Optical response of strongly coupled quantum dot - metal nanoparticle systems: Double peaked Fano structure and bistability," Nano Lett. 8, 2106-2111 (2008).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 135-169 (2008).

2007

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
[CrossRef]

2006

E. Waks, and J. Vuckovic, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

2005

M. Fleishhauer, A. Imamoglu, and J. P. Narangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

2004

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

2003

P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).

2002

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002).
[CrossRef]

1999

S. A. Empedocles, and M. G. Bawendi, "Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots," J. Phys. Chem. B 103, 1826-1830 (1999).
[CrossRef]

1996

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

1993

S. H. Park, M. P. Casy, and J. P. Falk, "Nonlinear optical properties of CdSe quantum dots," J. Appl. Phys. 73, 8041-8045 (1993).
[CrossRef]

1981

A. Nitzan, and L. E. Brus, "Theoretical model for enhanced photochemistry on rough surfaces," J. Chem. Phys. 75, 2205-2214 (1981).
[CrossRef]

J. Gersten, and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139-1152 (1981).
[CrossRef]

1972

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Abdelsalam, M. E.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 135-169 (2008).

Alivisatos, A. P.

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

Alzar, C. L. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002).
[CrossRef]

Artuso, R. D.

R. D. Artuso, and G. W. Bryant, "Optical response of strongly coupled quantum dot - metal nanoparticle systems: Double peaked Fano structure and bistability," Nano Lett. 8, 2106-2111 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Baumberg, J. J.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Bawendi, M. G.

S. A. Empedocles, and M. G. Bawendi, "Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots," J. Phys. Chem. B 103, 1826-1830 (1999).
[CrossRef]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Bjork, M. T.

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Boussert, B.

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

Brus, L. E.

A. Nitzan, and L. E. Brus, "Theoretical model for enhanced photochemistry on rough surfaces," J. Chem. Phys. 75, 2205-2214 (1981).
[CrossRef]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 135-169 (2008).

Bryant, G. W.

R. D. Artuso, and G. W. Bryant, "Optical response of strongly coupled quantum dot - metal nanoparticle systems: Double peaked Fano structure and bistability," Nano Lett. 8, 2106-2111 (2008).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Casy, M. P.

S. H. Park, M. P. Casy, and J. P. Falk, "Nonlinear optical properties of CdSe quantum dots," J. Appl. Phys. 73, 8041-8045 (1993).
[CrossRef]

Celebrano, M.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009).
[CrossRef]

Chong, C. T.

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cui, Y.

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Donega, C. de M.

C. de M. Donega, and R. Koole, "Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots," J. Phys. Chem. C 113, 6511-6520 (2009).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Empedocles, S. A.

S. A. Empedocles, and M. G. Bawendi, "Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots," J. Phys. Chem. B 103, 1826-1830 (1999).
[CrossRef]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Falk, J. P.

S. H. Park, M. P. Casy, and J. P. Falk, "Nonlinear optical properties of CdSe quantum dots," J. Appl. Phys. 73, 8041-8045 (1993).
[CrossRef]

Faraon, A.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Fleishhauer, M.

M. Fleishhauer, A. Imamoglu, and J. P. Narangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Gérard, J.-M.

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Gersten, J.

J. Gersten, and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139-1152 (1981).
[CrossRef]

Gibbs, H. M.

J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Giessen, H.

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Govorov, A. O.

W. Zhang, A. O. Govorov, and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Gray, S. K.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

J. M. Montgomery, T.-W. Lee, and S. K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys. Condens. Matter 20, 323201 (2008).
[CrossRef]

M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Guyot-Sionnest, P.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Halas, N. J.

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Hohenester, U.

A. Trugler, and U. Hohenester, "Strong coupling between a metallic nanoparticle and a single molecule," Phys. Rev. B 77, 115403 (2008).
[CrossRef]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleishhauer, A. Imamoglu, and J. P. Narangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kastel, J.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Khitrova, J.

J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Kira, M.

J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Koch, S. W.

J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Koole, R.

C. de M. Donega, and R. Koole, "Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots," J. Phys. Chem. C 113, 6511-6520 (2009).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kukura, P.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009).
[CrossRef]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Lee, T. W.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Lee, T.-W.

J. M. Montgomery, T.-W. Lee, and S. K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys. Condens. Matter 20, 323201 (2008).
[CrossRef]

Lemaltre, A.

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Liddle, J. A.

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009).
[CrossRef] [PubMed]

Liu, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
[CrossRef]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Loffler, A.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Lonergan, M.

P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).

Lukyanchuk, V.

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

Maier, S. A.

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

Martinez, M. A. G.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002).
[CrossRef]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Montgomery, J. M.

J. M. Montgomery, T.-W. Lee, and S. K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys. Condens. Matter 20, 323201 (2008).
[CrossRef]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009).
[CrossRef] [PubMed]

Narangos, J. P.

M. Fleishhauer, A. Imamoglu, and J. P. Narangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Nitzan, A.

J. Gersten, and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139-1152 (1981).
[CrossRef]

A. Nitzan, and L. E. Brus, "Theoretical model for enhanced photochemistry on rough surfaces," J. Chem. Phys. 75, 2205-2214 (1981).
[CrossRef]

Nordlander, P.

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

Norris, D. J.

P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009).
[CrossRef] [PubMed]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

Nussenzveig, P.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002).
[CrossRef]

Ocola, L. E.

L. E. Ocola, "Nanoscale geometry assisted proximity correction for electron beam direct write lithography," J. Vac. Sci. Technol. B 27, 2569-2571 (2009).
[CrossRef]

Oh, S.

P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009).
[CrossRef] [PubMed]

Palinginis, P.

P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).

Park, S. H.

S. H. Park, M. P. Casy, and J. P. Falk, "Nonlinear optical properties of CdSe quantum dots," J. Appl. Phys. 73, 8041-8045 (1993).
[CrossRef]

Pelton, M.

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

X. Wu, Y. Sun, and M. Pelton, "Recombination rates for single colloidal quantum dots near a smooth metal film," Phys. Chem. Chem. Phys. 11, 5867-5870 (2009).
[CrossRef] [PubMed]

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 135-169 (2008).

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Renn, A.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Sandoghdar, V.

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009).
[CrossRef]

Scherer, A.

J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Sönnichsen, C.

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

Sun, Y.

X. Wu, Y. Sun, and M. Pelton, "Recombination rates for single colloidal quantum dots near a smooth metal film," Phys. Chem. Chem. Phys. 11, 5867-5870 (2009).
[CrossRef] [PubMed]

Tavenner, S.

P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).

Trugler, A.

A. Trugler, and U. Hohenester, "Strong coupling between a metallic nanoparticle and a single molecule," Phys. Rev. B 77, 115403 (2008).
[CrossRef]

Vuckovic, J.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

E. Waks, and J. Vuckovic, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

Waks, E.

E. Waks, and J. Vuckovic, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

Wang, H.

P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

Wu, X.

X. Wu, Y. Sun, and M. Pelton, "Recombination rates for single colloidal quantum dots near a smooth metal film," Phys. Chem. Chem. Phys. 11, 5867-5870 (2009).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, A. O. Govorov, and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Zheludev, N. I.

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

Am. J. Phys.

C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002).
[CrossRef]

J. Appl. Phys.

S. H. Park, M. P. Casy, and J. P. Falk, "Nonlinear optical properties of CdSe quantum dots," J. Appl. Phys. 73, 8041-8045 (1993).
[CrossRef]

J. Chem. Phys.

A. Nitzan, and L. E. Brus, "Theoretical model for enhanced photochemistry on rough surfaces," J. Chem. Phys. 75, 2205-2214 (1981).
[CrossRef]

J. Gersten, and A. Nitzan, "Spectroscopic properties of molecules interacting with small dielectric particles," J. Chem. Phys. 75, 1139-1152 (1981).
[CrossRef]

J. Phys. Chem. B

S. A. Empedocles, and M. G. Bawendi, "Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots," J. Phys. Chem. B 103, 1826-1830 (1999).
[CrossRef]

J. Phys. Chem. C

C. de M. Donega, and R. Koole, "Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots," J. Phys. Chem. C 113, 6511-6520 (2009).
[CrossRef]

J. Phys. Condens. Matter

J. M. Montgomery, T.-W. Lee, and S. K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys. Condens. Matter 20, 323201 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

L. E. Ocola, "Nanoscale geometry assisted proximity correction for electron beam direct write lithography," J. Vac. Sci. Technol. B 27, 2569-2571 (2009).
[CrossRef]

Laser Photon. Rev.

M. Pelton, J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser Photon. Rev. 2, 135-169 (2008).

Nano Lett.

R. D. Artuso, and G. W. Bryant, "Optical response of strongly coupled quantum dot - metal nanoparticle systems: Double peaked Fano structure and bistability," Nano Lett. 8, 2106-2111 (2008).
[CrossRef] [PubMed]

Y. Cui, M. T. Bjork, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, "Integration of colloidal nanocrystals into lithographically patterned devices," Nano Lett. 4, 1093-1098 (2004).
[CrossRef]

P. Kukura, M. Celebrano, A. Renn, and V. Sandoghdar, "Imaging a single quantum dot when it is dark," Nano Lett. 9, 926-929 (2009).
[CrossRef]

Nat. Mater.

N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009).
[CrossRef] [PubMed]

V. Lukyanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010).
[CrossRef]

Nat. Phys.

J. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Nature

J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot - semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal microcavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys.

X. Wu, Y. Sun, and M. Pelton, "Recombination rates for single colloidal quantum dots near a smooth metal film," Phys. Chem. Chem. Phys. 11, 5867-5870 (2009).
[CrossRef] [PubMed]

Phys. Rev. B

P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, "Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals," Phys. Rev. B 67, 201307 (2003).

A. Trugler, and U. Hohenester, "Strong coupling between a metallic nanoparticle and a single molecule," Phys. Rev. B 77, 115403 (2008).
[CrossRef]

M. Liu, P. Guyot-Sionnest, T. W. Lee, and S. K. Gray, "Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations," Phys. Rev. B 76, 235428 (2007).
[CrossRef]

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett.

E. Waks, and J. Vuckovic, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, "Excitation of dark plasmons in metal nanoparticles by a localized emitter," Phys. Rev. Lett. 102, 107401 (2009).
[CrossRef] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, "Strong coupling between localized plasmons and organic excitons in metal nanovoids," Phys. Rev. Lett. 97, 266808 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, "Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect," Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

E. Peter, P. Senellart, D. Martrou, A. Lemaltre, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton-photon strong coupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys.

M. Fleishhauer, A. Imamoglu, and J. P. Narangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Science

P. Nagpal, N. C. Lindquist, S. Oh, and D. J. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science 325, 594-597 (2009).
[CrossRef] [PubMed]

Other

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd Ed., (Wiley, New York, 1983).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed. (Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the quantum-dot / metal-nanoparticle hybrid system considered. The blue ellipses represent silver nanoparticles and the red circle represents a semiconductor nanocrystal. The various domains used in the finite-difference time-domain simulations are also illustrated.

Fig. 2
Fig. 2

Extinction and scattering spectra for a quantum-dot / metal-nanoparticle hybrid system. The structure is illustrated in the inset of (a). Solid squares are values of (a) extinction cross-section (in thousands of nm2) for quantum-dot linewidth γQD = 10 meV, (b) scattering cross-section for γQD = 10 meV, (c) extinction for γQD = 2 meV, and (d) scattering for γQD = 2 meV, all calculated using a rigorous finite-difference time-domain (FDTD) method. The solid lines are fits to a phenomenological coupled-oscillator model [Eq. (7) and Eq. (8)]. Solid circles are extinction and scattering spectra for the same system but without quantum-dot absorption, also calculated by the FDTD method.

Fig. 3
Fig. 3

(a) and (c): Peak-to-peak separation for extinction and scattering spectra, respectively, according to a coupled-oscillator model [Eq. (9) and Eq. (10)]. Values are shown as a function of quantum-dot linewidth, γQD, and coupling strength, g, with both values normalized by the surface-plasmon linewidth, γSP. (b) and (d) Depth of the transparency dip in the extinction and scattering spectra, normalized by the height of the plasmon-resonance peak, according to the same coupled-oscillator model.

Fig. 4
Fig. 4

Electric field, Ez, and cosine of its phase, cos(Φ), for the quantum-dot / metal-nanoparticle structure shown in Fig. 1, calculated using the rigorous finite-difference time-domain method. The z direction is along the long axes of the metal nanoparticles. Results are shown at the surface-plasmon resonance energy with (b,d) and without (a,c) the quantum-dot absorption.

Fig. 5
Fig. 5

(a) Illustration of a quantum-dot / metal-nanoparticle hybrid structure that could potentially be fabricated lithographically. (b) Extinction spectra for the structure when the corners of the metal nanoparticles have a radius of curvature of 5 nm (solid squares) and 2 nm (open squares), calculated using the rigorous finite-difference time-domain (FDTD) method. The lines are fits to Eq. (7). (c) Scattering spectra for the same structures, also calculated by the FDTD method. The lines are fits to Eq. (8).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ɛ QD ( ω ) = ɛ CdSe f ω QD 2 ω 2 ω QD 2 + i γ QD ω ,
ɛ A g ( ω ) = ɛ Ag ω D 2 ω 2 + i ω γ D k = 1 N σ L , k ω L , k 2 ω 2 ω L , k 2 + i γ L , k ω ,
x ¨ SP ( t ) + γ SP x ˙ SP ( t ) + ω SP 2 x SP ( t ) + g x ˙ QD ( t ) = F SP ( t ) ,
x ¨ QD ( t ) + γ QD x ˙ QD ( t ) + ω QD 2 x QD ( t ) g x ˙ SP ( t ) = F QD ( t ) ,
x SP ( t ) = Re ( ( ω QD 2 ω 2 i γ QD ω ) F SP ( t ) ( ω 2 ω SP 2 + i γ SP ω ) ( ω 2 ω QD 2 + i γ QD ω ) ω 2 g 2 ) ,
x QD ( t ) = Re ( ig ω F SP ( t ) ( ω 2 ω SP 2 + i γ SP ω ) ( ω 2 ω QD 2 + i γ QD ω ) ω 2 g 2 ) .
C ext ( ω ) F SP ( t ) x ˙ SP ( t ) ω Im ( ( ω QD 2 ω 2 i γ QD ω ) ( ω 2 ω SP 2 + i γ SP ω ) ( ω 2 ω QD 2 + i γ QD ω ) ω 2 g 2 ) ,
C sca ( ω ) = 8 π 3 k 4 | α | 2 ω 4 | ( ω QD 2 ω 2 i γ QD ω ) ( ω 2 ω SP 2 + i γ SP ω ) ( ω 2 ω QD 2 + i γ QD ω ) ω 2 g 2 | 2 .
C ext ( ω ) ω Im ( ω 0 ω i γ QD ω / 2 2 ω 0 g 2 ( γ SP γ QD ) 2 / 4 ( 1 ω Ω + 1 ω Ω ) ) ,
C sca ( ω ) ω 4 | ω 0 ω i γ QD ω / 2 2 ω 0 g 2 ( γ SP γ QD ) 2 / 4 ( 1 ω Ω + 1 ω Ω ) | 2 ,

Metrics