Abstract

Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system’s frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1THz across a wafer and 105GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [CrossRef]
  2. P. M. Kogge, ed., “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems,” Univ. of Notre Dame, CSE Dept. Tech. Report TR-2008–13, Sept. 28, 2008.
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  4. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17(25), 22484–22490 (2009).
    [CrossRef]
  5. W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,” (CLEO) CThJ4 San Jose, Ca (2010).
  6. M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally Confined High-Speed Second-Order Silicon Microdisk Switches,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP14.
  7. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
    [CrossRef]
  8. A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, M. Lipson, K. Bergman, “Broadband CMOS-Compatible Silicon Photonic Electro-Optic Switch,” CLEO CPDA11 (2010).
  9. A. Barkai, Y. Chetrit, O. Cohen, R. Cohen, N. Elek, E. Ginsburg, S. Litski, A. Michaeli, O. Raday, D. Rubin, G. Sarid, N. Izhaky, M. Morse, O. Dosunmu, A. Liu, L. Liao, H. Rong, Y. H. Kuo, S. Xu, D. Alduino, J. Tseng, H. F. Liu, and M. Paniccia, “Integrated Silicon Photonics for Optical Networks,” J. Opt. Netw. 6(1Issue 1), 25–47 (2007).
    [CrossRef]
  10. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” CLEO CPDB10 (2009).
  11. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.
  12. P. Dong, S. Liao, D. Feng, H. Liang, R. Shafiiha, N. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Tunable High Speed Silicon Microring Modulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ5.
  13. W. A. Zortman, M. R. Watts, and D. C. Trotter, “Determination of Wafer and Process Induced Resonant Frequency Variation in Silicon Microdisk-Resonators,” in Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMC5.
  14. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Proceedings of IEEE conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 4–6, 2008.
  15. M. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” Integrated Photonics Research, Washington, DC, (2003)
  16. R. E. Walpole, and R. H. Meyers, Probability and Statistics for Engineers and Scientists, (Macmillan, New York, 1989)
  17. Soitec products page: http://www.soitec.com/en/products/soi-products.php
  18. International Technology Roadmap for Semiconductors 2009: http://www.itrs.net/Links/2009ITRS/Home2009.htm
  19. D. K. Sparacin, C.-Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30(17), 2251–2253 (2005).
    [CrossRef] [PubMed]
  20. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
    [CrossRef] [PubMed]
  21. Y. Zhu, T. E. Müller, and J. A. Lercher, “Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications,” Adv. Funct. Mater. 18(21), 3427–3433 (2008).
    [CrossRef]
  22. S.-M. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide film,” Phys. Rev. B 52(1), 253–257 (1995).
    [CrossRef]

2010 (2)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

Y. Zhu, T. E. Müller, and J. A. Lercher, “Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications,” Adv. Funct. Mater. 18(21), 3427–3433 (2008).
[CrossRef]

2007 (1)

2005 (2)

1995 (1)

S.-M. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide film,” Phys. Rev. B 52(1), 253–257 (1995).
[CrossRef]

Alduino, D.

Allen, T.

S.-M. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide film,” Phys. Rev. B 52(1), 253–257 (1995).
[CrossRef]

Asghari, M.

Barkai, A.

Bergman, K.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Cahill, D.

S.-M. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide film,” Phys. Rev. B 52(1), 253–257 (1995).
[CrossRef]

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Chetrit, Y.

Cohen, O.

Cohen, R.

Cunningham, J. E.

Dong, P.

Dosunmu, O.

Elek, N.

Feng, D.

Ginsburg, E.

Gleason, K. K.

Hong, C.-Y.

Izhaky, N.

Kimerling, L. C.

Krishnamoorthy, A. V.

Kung, C.-C.

Kuo, Y. H.

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

Lee, S.-M.

S.-M. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide film,” Phys. Rev. B 52(1), 253–257 (1995).
[CrossRef]

Lercher, J. A.

Y. Zhu, T. E. Müller, and J. A. Lercher, “Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications,” Adv. Funct. Mater. 18(21), 3427–3433 (2008).
[CrossRef]

Li, G.

Liang, H.

Liao, L.

Liao, S.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Litski, S.

Liu, A.

Liu, H. F.

Lock, J. P.

Luo, Y.

Mekis, A.

Michaeli, A.

Michel, J.

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Morse, M.

Müller, T. E.

Y. Zhu, T. E. Müller, and J. A. Lercher, “Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications,” Adv. Funct. Mater. 18(21), 3427–3433 (2008).
[CrossRef]

Paniccia, M.

Pinguet, T.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Qian, W.

Raday, O.

Raj, K.

Rong, H.

Rubin, D.

Sarid, G.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shafiiha, R.

Shubin, I.

Sparacin, D. K.

Thacker, H.

Tseng, J.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Xu, S.

Yao, J.

Zheng, D.

Zheng, X.

Zhu, Y.

Y. Zhu, T. E. Müller, and J. A. Lercher, “Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications,” Adv. Funct. Mater. 18(21), 3427–3433 (2008).
[CrossRef]

Adv. Funct. Mater. (1)

Y. Zhu, T. E. Müller, and J. A. Lercher, “Single Step Preparation of Novel Hydrophobic Composite Films for Low-k Applications,” Adv. Funct. Mater. 18(21), 3427–3433 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, “High-Performance Modulators and Switches for Silicon Photonic Networks-on-Chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 6–22 (2010).
[CrossRef]

J. Opt. Netw. (1)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

S.-M. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide film,” Phys. Rev. B 52(1), 253–257 (1995).
[CrossRef]

Proc. IEEE (1)

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[CrossRef]

Other (13)

P. M. Kogge, ed., “ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems,” Univ. of Notre Dame, CSE Dept. Tech. Report TR-2008–13, Sept. 28, 2008.

A. Biberman, H. L. R. Lira, K. Padmaraju, N. Ophir, M. Lipson, K. Bergman, “Broadband CMOS-Compatible Silicon Photonic Electro-Optic Switch,” CLEO CPDA11 (2010).

W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-Power High-Speed Silicon Microdisk Modulators,” (CLEO) CThJ4 San Jose, Ca (2010).

M. R. Watts, D. C. Trotter, and R. W. Young, “Maximally Confined High-Speed Second-Order Silicon Microdisk Switches,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP14.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic Resonant Microrings (ARMs) with Directly Integrated Thermal Microphotonics,” CLEO CPDB10 (2009).

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon Microring Modulator with Integrated Heater and Temperature Sensor for Thermal Control,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ3.

P. Dong, S. Liao, D. Feng, H. Liang, R. Shafiiha, N. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Tunable High Speed Silicon Microring Modulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThJ5.

W. A. Zortman, M. R. Watts, and D. C. Trotter, “Determination of Wafer and Process Induced Resonant Frequency Variation in Silicon Microdisk-Resonators,” in Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper IMC5.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Proceedings of IEEE conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, New York, 2008), pp. 4–6, 2008.

M. Popović, “Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures,” Integrated Photonics Research, Washington, DC, (2003)

R. E. Walpole, and R. H. Meyers, Probability and Statistics for Engineers and Scientists, (Macmillan, New York, 1989)

Soitec products page: http://www.soitec.com/en/products/soi-products.php

International Technology Roadmap for Semiconductors 2009: http://www.itrs.net/Links/2009ITRS/Home2009.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The layout of the devices that were measured from Wafer 1 and Wafer 2. Wafer 0 only had one device per chip, but followed the same measurement scheme from top to notch. (b) The frequency deviation from the wafer mean by distance from wafer center. All three wafers showed frequency increasing from top to notch and W1 had a statistical outlier chip at the top of the wafer.

Fig. 2
Fig. 2

The (a) TE and (b) TM modal fields (red) used to extract the layer thickness and diameter variations in this study. Both modes exhibit strong confinement in the vertical direction, which results in substantial sensitivity to silicon thickness variations.

Fig. 3
Fig. 3

(a) Thickness and diameter variations from the mean across W1 and W2 after extraction from the frequency data using Eq. (1). (b) The reconstructed TE variation in W1 showing the strong influence that thickness variation has on TE frequency.

Fig. 4
Fig. 4

(a) The average dimensional variation within the dice shows that diameter variations are consistent from wafer to wafer leading to investigation of the mask error special cause. (b). After residual analysis to remove the special cause variation the diameter is controlled to within +/−4Å on a die.

Fig. 5
Fig. 5

(a) After residual analysis on the diameter variation, 105GHz frequency variation is found to be the capability of our process. When thickness is also corrected the deviation drops to close to 70GHz, but evidence of a special cause driving the thickness variation was not found. (b) The diameter corrected data in histogram format. Matched silicon photonic chips would still have to tune out the within die frequency deviation and on average tune across a 50GHz range when using a 0.35 micron process.

Tables (2)

Tables Icon

Table 1 The mean, standard deviation and median for the resonant wavelengths of the devices across the three wafers. Data with the first chip filtered out of W1 is shown in parenthesis

Tables Icon

Table 2 The predicted frequency deviation is given for a dimensional deviation in both thickness and diameter. Thickness is the dominant driver of frequency variation although diameter is more significant in the pertinent TE modes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ d f d T | T E d f d D | T E d f d T | T M d f d D | T M ] × [ Δ T Δ D ] = [ Δ f T E Δ f T M ]
P δ = R 2 η H

Metrics