Abstract

We investigate numerically the effect of ultralong Raman laser fiber amplifier design parameters, such as span length, pumping distribution and grating reflectivity, on the RIN transfer from the pump to the transmitted signal. Comparison is provided to the performance of traditional second-order Raman amplified schemes, showing a relative performance penalty for ultralong laser systems that gets smaller as span length increases. We show that careful choice of system parameters can be used to partially offset such penalty.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
    [CrossRef]
  2. J. Bromage, “Raman amplification for fiber communications systems,” J. Lightwave Technol. 22(1), 79–93 (2004).
    [CrossRef]
  3. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
    [CrossRef] [PubMed]
  4. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4372 .
    [CrossRef] [PubMed]
  5. A. E. El-Taher, J. D. Ania-Castañón, V. Karalekas, and P. Harper, “High efficiency supercontinuum generation using ultra-long Raman fiber cavities,” Opt. Express 17(20), 17909–17915 (2009).
    [CrossRef] [PubMed]
  6. M. Alcón-Camas, A. E. El-Taher, H. Wang, P. Harper, V. Karalekas, J. A. Harrison, and J. D. Ania-Castañón, “Long-distance soliton transmission through ultralong fiber lasers,” Opt. Lett. 34(20), 3104–3106 (2009).
    [CrossRef] [PubMed]
  7. J. Scheuer and A. Yariv, “Giant fiber lasers: a new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
    [CrossRef] [PubMed]
  8. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to Signal RIN Transfer in Raman Fiber Amplifiers,” J. Lightwave Technol. 19(8), 1140–1148 (2001).
    [CrossRef]
  9. B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise Figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
    [CrossRef]
  10. M. D. Mermelstein, K. Brar, and C. Headley, “RIN Transfer Measurement and Modeling in Dual-Order Raman Fiber Amplifiers,” J. Lightwave Technol. 21(6), 1518–1523 (2003).
    [CrossRef]
  11. M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
    [CrossRef]
  12. V. Kalavally, I. D. Rukhlenko, M. Premaratne, and T. Win, “Analytical study of RIN transfer in pulse-pumped Raman amplifiers,” J. Lightwave Technol. 27(20), 4536–4543 (2009).
    [CrossRef]
  13. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [CrossRef]

2010

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

2009

2006

J. Scheuer and A. Yariv, “Giant fiber lasers: a new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[CrossRef] [PubMed]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
[CrossRef]

B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise Figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

2004

2003

2002

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

2001

Alcón-Camas, M.

Ania-Castañón, J. D.

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Brar, K.

Brinkmeyer, E.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
[CrossRef]

Bristiel, B.

B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise Figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

Bromage, J.

Chen, X.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Cierullies, S.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
[CrossRef]

Ellingham, T. J.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

El-Taher, A. E.

Fludger, C. R. S.

Gallion, P.

B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise Figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

Handerek, V.

Harper, P.

Harrison, J. A.

Headley, C.

Ibbotson, R.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

Jiang, S.

B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise Figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Kalavally, V.

Karalekas, V.

Krause, M.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
[CrossRef]

Mears, R. J.

Mermelstein, M. D.

Pincemin, E.

B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise Figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Premaratne, M.

Renner, H.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
[CrossRef]

Rukhlenko, I. D.

Scheuer, J.

J. Scheuer and A. Yariv, “Giant fiber lasers: a new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[CrossRef] [PubMed]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Wang, H.

Win, T.

Yariv, A.

J. Scheuer and A. Yariv, “Giant fiber lasers: a new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[CrossRef] [PubMed]

Zhang, L.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 548–559 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Bristiel, S. Jiang, P. Gallion, and E. Pincemin, “New model of noise Figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

Opt. Commun.

M. Krause, S. Cierullies, H. Renner, and E. Brinkmeyer, “Pump-to-Stokes RIN transfer in Raman fiber lasers and its impact on the performance of co-pumped Raman amplifiers,” Opt. Commun. 260(2), 656–661 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

J. Scheuer and A. Yariv, “Giant fiber lasers: a new paradigm for secure key distribution,” Phys. Rev. Lett. 97(14), 140502 (2006).
[CrossRef] [PubMed]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic description of the studied pumped Raman amplifier systems. (a) Ultralong Raman fiber laser. (b) Equivalent power distribution system with dual pumping scheme.

Fig. 2
Fig. 2

RIN transfer value at several span lengths for (a) laser cavity with 90% FBGs and (b) fiber span dual pumping scheme without reflectors.

Fig. 3
Fig. 3

(a) Maximum RIN transfer value and value at 4 kHz at versus span length for the two considered schemes, (b) 2 dB drop frequency versus span length for the two considered schemes, (c) subset of results from figure 2(a)

Fig. 4
Fig. 4

RIN transfer value vs. pump ratio and Frequency for the case of (a) a 75km laser cavity with 90% reflectors, (b) a 75km dual-wavelength second-order pumping scheme without reflectors and (c) subset results from (a) and (b).

Fig. 5
Fig. 5

(a) RIN transfer value vs. reflectivity and frequency for a 75 km laser cavity for different FBG reflectivities. (b) Subset of RIN transfer value vs. FBG reflectivity for different frequencies. (c) 2 dB drop frequency vs. FBGs reflectivity for the same cavity.

Tables (1)

Tables Icon

Table 1 Simulation parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H 2 n d ( ω ) = | R I N S i g n a l O u t ( ω ) R I N P u m p I n ( ω ) |
d n 1 ± d z + i d 1 ± ω n 1 ± = α 1 n 1 ± g 1 v 1 v 2 P 1 ± ( n 2 + + n 2 ) g 1 v 1 v 2 ( P 2 + + P 2 ) n 1 ± ± ε 1 n 1
d n 2 ± d z + i d 2 ± ω n 2 ± = α 2 n 2 ± ± g 1 P 2 ± ( n 1 + + n 1 ) ± g 1 n 2 ± ( P 1 + + P 1 ) g 2 v 2 v S P 2 ± n S g 2 v 2 v S n 2 ± P S ± ε 2 n 2
d n S d z = α S n S + g 2 P S ( n 2 + + n 2 ) + g 2 n S ( P 2 + + P 2 ) + ε S n S
For scheme 1: ​   n 1 + ( 0 ) = n 10 ; n 1 ( 0 ) = n 20 ; n 2 + ( 0 ) = R 1 n 2 ( 0 ) ; n 2 ( L ) = R 2 n 2 + ( L ) ; n S ( 0 ) = 0
For scheme 2: ​   n 1 + ( 0 ) = n 10 + ; n 1 ( 0 ) = n 10 ; n 2 + ( 0 ) = n 20 + ; n 2 ( L ) = n 20 ; n S ( 0 ) = 0

Metrics