Abstract

Multimode polymer optical waveguide evaluations by using a combination of multimode optical fibers (MMF) and Light Emitting Diode (LED) give very often inconsistent experimental result. It is due to the over-filled properties of the launch light created by this configuration. We propose an optimized simple launch configuration to overcome the problems by using similar configuration. The optimized launch configuration creates an optimal-filled launch light where its encircled flux (EF) profile satisfies the EF template provided by the International Electrotechnical Commission (IEC). We have used the standard optical fibers and optical fiber adaptors to create the optimized simple launch configuration with high stability. Therefore, our proposed launch configuration is suitable for realizing a cost effective optimized launch configuration for standardization of multimode polymer optical waveguide evaluations. We demonstrated reliability of the proposed launch configuration by examining the reproducibility of the insertion loss (IL) measurements. We have used two waveguide samples that have different characteristics for this purpose. It was found that the insertion loss (IL) measurements of the two samples are consistent with the largest variation of less than 5%. This variation is better than the proposed value given by the IEC that is 10%.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors

Yoshie Morimoto and Takaaki Ishigure
Opt. Express 24(4) 3550-3561 (2016)

The photonic lantern

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson
Adv. Opt. Photon. 7(2) 107-167 (2015)

Experimental demonstration of 10?Gbit?s transmission with an optical backplane system using optical slots

In-Kui Cho, Keun Byoung Yoon, Seung Ho Ahn, Hee-Kyung Sung, Sang won Ha, Young Un Heo, and Hyo-Hoon Park
Opt. Lett. 30(13) 1635-1637 (2005)

References

  • View by:
  • |
  • |
  • |

  1. V. C. Hicks, “Multimode fiber certification: Light source launch conditions and encircled flux standard,” EXFO Application Notes 196.
  2. B. Lane, A. Brunsting, and R. Pimpinella, “Insertion Loss Performance Testing of 10 Gb/s Fiber Patch Cords for High-Speed Networks,” Proc. 57th IWCS, November 2008.
  3. J. B. Schlager, M. J. Hackert, P. Pepeljugoski, and J. Gwinn, “Measurement for Enhanced Bandwidth Performance Over 62.5 μm Multimode Fiber in Short-Wavelength Local Area Network,” J. Lightwave Technol. 21(5), 1276–1285 (2003).
    [Crossref]
  4. A. G. Hallam, D. A. Robinson, and I. Bennion, “Mode Control for Emerging Link Performance Standards,” IET Optoelectron. 2(5), 175–181 (2008).
    [Crossref]
  5. O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
    [Crossref]
  6. IEC 61280–4-1 Ed. 2.0 (2009–06–10, 86C/ 820/ Publication Issued), Fibre-optic communication subsystem test procedures-Part 4–1: Installed cable plant-Multimode attenuation measurement.
  7. S. Takahashi, T. Noda, and Y. Koike, “Restricted mode launch condition for graded index plastic optical fibers,” the 17th International Conference on Plastic Optical Fibers (POF 2008), pp. 124, Santa Clara, CA, USA.
  8. H. J. R. Dutton, Understanding Optical Communications (IBM 1998), Chap. 2.
  9. R.G. Hunsperger, Integrated Optics, Theory and Technology (Springer 1995), Chap. 5.
  10. Y. Koike, “Status of Photonics Polymers for Fiber to the Display”, slide presentation in Finnish-Japanese Workshop on Functional Materials, Espoo and Helsinki, Findland, May 25, 2009.

2010 (1)

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

2008 (1)

A. G. Hallam, D. A. Robinson, and I. Bennion, “Mode Control for Emerging Link Performance Standards,” IET Optoelectron. 2(5), 175–181 (2008).
[Crossref]

2003 (1)

Bennion, I.

A. G. Hallam, D. A. Robinson, and I. Bennion, “Mode Control for Emerging Link Performance Standards,” IET Optoelectron. 2(5), 175–181 (2008).
[Crossref]

Gwinn, J.

Hackert, M. J.

Hallam, A. G.

A. G. Hallam, D. A. Robinson, and I. Bennion, “Mode Control for Emerging Link Performance Standards,” IET Optoelectron. 2(5), 175–181 (2008).
[Crossref]

Hirano, K.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Kaino, T.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Makino, T.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Matsui, Y.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Morimoto, M.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Pepeljugoski, P.

Robinson, D. A.

A. G. Hallam, D. A. Robinson, and I. Bennion, “Mode Control for Emerging Link Performance Standards,” IET Optoelectron. 2(5), 175–181 (2008).
[Crossref]

Schlager, J. B.

Selvan, J. S.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Shibata, S.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Sugihara, O.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Tajiri, K.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Takayama, K.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Ushiwata, T.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

Yagi, S.

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

O. Sugihara, K. Takayama, J. S. Selvan, S. Shibata, T. Kaino, K. Hirano, T. Ushiwata, M. Morimoto, S. Yagi, T. Makino, Y. Matsui, and K. Tajiri, “Polymer Optical Waveguide Chip: New Tool for Simple Evaluation of Optical Parameters of Waveguide Elements,” IEEE Photon. Technol. Lett. 22(10), 703–705 (2010).
[Crossref]

IET Optoelectron. (1)

A. G. Hallam, D. A. Robinson, and I. Bennion, “Mode Control for Emerging Link Performance Standards,” IET Optoelectron. 2(5), 175–181 (2008).
[Crossref]

J. Lightwave Technol. (1)

Other (7)

V. C. Hicks, “Multimode fiber certification: Light source launch conditions and encircled flux standard,” EXFO Application Notes 196.

B. Lane, A. Brunsting, and R. Pimpinella, “Insertion Loss Performance Testing of 10 Gb/s Fiber Patch Cords for High-Speed Networks,” Proc. 57th IWCS, November 2008.

IEC 61280–4-1 Ed. 2.0 (2009–06–10, 86C/ 820/ Publication Issued), Fibre-optic communication subsystem test procedures-Part 4–1: Installed cable plant-Multimode attenuation measurement.

S. Takahashi, T. Noda, and Y. Koike, “Restricted mode launch condition for graded index plastic optical fibers,” the 17th International Conference on Plastic Optical Fibers (POF 2008), pp. 124, Santa Clara, CA, USA.

H. J. R. Dutton, Understanding Optical Communications (IBM 1998), Chap. 2.

R.G. Hunsperger, Integrated Optics, Theory and Technology (Springer 1995), Chap. 5.

Y. Koike, “Status of Photonics Polymers for Fiber to the Display”, slide presentation in Finnish-Japanese Workshop on Functional Materials, Espoo and Helsinki, Findland, May 25, 2009.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) The EF template for multimode launch GI fiber with a core diameter of 50 μm and light source wavelength of 850 nm provided by the IEC

Fig. 2
Fig. 2

(Color online) Schematic layout of the Near-Field Pattern (NFP) experimental setup

Fig. 3
Fig. 3

(Color online) Example of the Near-Field Pattern (NFP) using LED and GSG mode scrambler (a) and using LD (b) captured in the NFP experiment (not in scale)

Fig. 4
Fig. 4

(Color online) Schematic layout of the Insertion Loss (IL) experimental setup

Fig. 5
Fig. 5

(Color online) Experimental results of the intensity evolution inside the GI, GI-SI, GI-SI-GI configurations for the fiber bending diameter of 6 mm, 6 mm, 6 mm (top) and 25 mm, 25 mm, 25 mm (bottom); the NFPs are at the same scale; rectangular black in the configurations represent the standard optical fiber adaptors

Fig. 6
Fig. 6

(Color online) Comparison between the EF profiles produced by the SGS and the GSG mode scramblers with the same bending diameter of 25 mm, 25 mm, 25 mm

Fig. 7
Fig. 7

(Color online) The EF profile obtained by using the GSG mode scrambler with various rod diameters. The inset enlarges the EF profile at the control radii of 20 μm and 22 μm

Tables (2)

Tables Icon

Table 1 Comparison between two insertion loss (IL) measurement results

Tables Icon

Table 2 Comparison of the IL measurement results obtained by the GSG mode scrambler and the SM fiber

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E F ( r ) = 0 r r ' I ( r ' ) d r ' 0 r ' I ( r ' ) d r '
I L ( d B ) = P i n ( d B m ) P o u t ( d B m )

Metrics