Abstract

In this paper, we demonstrate for the first time that the new class of fluoride-based inorganic upconverting nanoparticles, NaYF4:Er3+, Yb3+, are the most efficient multiphoton excited fluorescent nanoparticles developed to date. The near-infrared-to-visible conversion efficiency of the aforementioned nanoparticles surpasses that of CdSe quantum dots and gold nanorods, which are the commercially available inorganic fluorescent nanoprobes presently used for multiphoton fluorescence bioimaging. The results presented here open new perspectives for the implementation of fluorescence tomography by multiphoton fluorescence imaging.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
    [CrossRef] [PubMed]
  2. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
    [CrossRef] [PubMed]
  3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
    [CrossRef] [PubMed]
  4. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  5. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
    [CrossRef] [PubMed]
  6. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
    [CrossRef] [PubMed]
  7. S. Mulligan, and B. MacVicar, “Two-photon fluorescence microscopy: basic principles, advantages and risks,” in Modern Research and Educational Topics in Microscopy, A. Méndez-Vilas, and J. Díaz, eds. (FORMATEX, Badajoz, Spain, 2007), pp. 881–889.
  8. N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009).
    [CrossRef] [PubMed]
  9. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  10. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  11. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
    [CrossRef]
  12. H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
    [CrossRef]
  13. S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109(34), 16350–16356 (2005).
    [CrossRef]
  14. M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008).
    [CrossRef]
  15. L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
    [CrossRef] [PubMed]
  16. D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17(14), 11350–11359 (2009).
    [CrossRef] [PubMed]
  17. C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
    [CrossRef] [PubMed]
  18. D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
    [CrossRef]
  19. N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
    [CrossRef] [PubMed]
  20. Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
    [CrossRef]
  21. S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
    [CrossRef] [PubMed]
  22. M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
    [CrossRef] [PubMed]
  23. L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
    [CrossRef] [PubMed]
  24. M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
    [CrossRef] [PubMed]
  25. J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
    [CrossRef] [PubMed]
  26. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
    [CrossRef]
  27. F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
    [CrossRef] [PubMed]
  28. F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
    [CrossRef] [PubMed]
  29. American National Standards Institute, “American National Standard for Safe use of Lasers,” (Laser Institute of America, Orlando, FL, 2000).
  30. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
    [CrossRef]
  31. F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [CrossRef] [PubMed]
  32. S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
    [CrossRef]
  33. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
    [CrossRef] [PubMed]
  34. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
    [CrossRef] [PubMed]
  35. G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
    [CrossRef] [PubMed]
  36. It should be mentioned that both two and three power dependences have been reported for upconversion fluorescent gold nanoparticles (see references 9 and 31). Obviously this is related to the participation of different excited states within the involved bands of gold. However, a proper explanation for different observed results does not exist at present.
  37. M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
    [CrossRef]
  38. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
    [CrossRef]
  39. J. A. Fisher, B. M. Salzberg, and A. G. Yodh, “Near infrared two-photon excitation cross-sections of voltage-sensitive dyes,” J. Neurosci. Methods 148(1), 94–102 (2005).
    [CrossRef] [PubMed]
  40. G. Gordillo, F. Rojas, and C. Calderón, “Optical characterization of Cd(Sx,Te1-x) thin films deposited by evaporation,” Sup. y Vac. 16, 30–33 (2003).
  41. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  42. M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
    [CrossRef]

2010 (4)

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[CrossRef]

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

2009 (13)

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
[CrossRef]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[CrossRef]

N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009).
[CrossRef] [PubMed]

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, “Surface plasmon effects on two photon luminescence of gold nanorods,” Opt. Express 17(14), 11350–11359 (2009).
[CrossRef] [PubMed]

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
[CrossRef] [PubMed]

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

2008 (5)

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[CrossRef]

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008).
[CrossRef]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[CrossRef] [PubMed]

2007 (2)

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

2006 (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

2005 (5)

S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109(34), 16350–16356 (2005).
[CrossRef]

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

J. A. Fisher, B. M. Salzberg, and A. G. Yodh, “Near infrared two-photon excitation cross-sections of voltage-sensitive dyes,” J. Neurosci. Methods 148(1), 94–102 (2005).
[CrossRef] [PubMed]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

2004 (2)

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

2003 (3)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

G. Gordillo, F. Rojas, and C. Calderón, “Optical characterization of Cd(Sx,Te1-x) thin films deposited by evaporation,” Sup. y Vac. 16, 30–33 (2003).

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2000 (2)

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
[CrossRef] [PubMed]

1998 (2)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
[CrossRef]

Albota, M. A.

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Alkilany, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Baev, A.

Baik, S.-I.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Banerjee, D.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[CrossRef]

Baxter, S. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Bergey, E. J.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Blazquez-Castro, A.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Bruchez, M. P.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Calderón, C.

G. Gordillo, F. Rojas, and C. Calderón, “Optical characterization of Cd(Sx,Te1-x) thin films deposited by evaporation,” Sup. y Vac. 16, 30–33 (2003).

Cao, T.

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

Capobianco, J. A.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Chanda, N.

N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009).
[CrossRef] [PubMed]

Chatterjee, D. K.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[CrossRef]

Chen, D.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Chen, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[CrossRef]

Chen, Z.

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Cheng, J.-X.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Choi, S. H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Chung, L. W. K.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Clark, S. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Cui, Y.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Debus, C.

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008).
[CrossRef]

Du, X.

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M.

S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109(34), 16350–16356 (2005).
[CrossRef]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Eustis, S.

S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109(34), 16350–16356 (2005).
[CrossRef]

Failla, A. V.

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008).
[CrossRef]

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Fisher, J. A.

J. A. Fisher, B. M. Salzberg, and A. G. Yodh, “Near infrared two-photon excitation cross-sections of voltage-sensitive dyes,” J. Neurosci. Methods 148(1), 94–102 (2005).
[CrossRef] [PubMed]

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Gamelin, D.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Gao, X.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Ge, Y.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Goldman, E. R.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[CrossRef] [PubMed]

Goldsmith, E. C.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Gole, A. M.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Gordillo, G.

G. Gordillo, F. Rojas, and C. Calderón, “Optical characterization of Cd(Sx,Te1-x) thin films deposited by evaporation,” Sup. y Vac. 16, 30–33 (2003).

Gu, M.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

Güdel, H.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Guo, L.-H.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

He, G. S.

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Hehlen, M.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Hilderbrand, S. A.

S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
[CrossRef]

Ho, P. C.-L.

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

Hsu, F.-Y.

Hu, H.

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Huang, C.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Hyeon, T.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Idris, N. M.

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

Jaque, D.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Jeon, K.-S.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Jia, B.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

Jiang, S.

S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
[CrossRef] [PubMed]

Johansen, J.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Juarranz de la Fuente, A.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Kang, H.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

Kannan, R.

N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009).
[CrossRef] [PubMed]

Katti, K. V.

N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009).
[CrossRef] [PubMed]

Kettelarij, A. J.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Kim, H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Kim, H. M.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Kim, J. H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Kim, Y. W.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
[CrossRef] [PubMed]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Kumar, R.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Larson, D. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lee, K. T.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Lee, N.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Lee, S. H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Leistikow, M. D.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Levenson, R. M.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Li, F.

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Li, J.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

Li, Z.

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

Lim, K. M.

S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
[CrossRef] [PubMed]

Lin, C.-W.

Liu, C.-H.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Liu, X.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[CrossRef]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[CrossRef] [PubMed]

Liu, X. G.

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

Liu, Y.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[CrossRef]

Lodahl, P.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Lu, H.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

Lüthi, S.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Mahendran, R.

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

Mahmood, U.

S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
[CrossRef]

Mao, C.-B.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Mattoussi, H.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[CrossRef] [PubMed]

Medintz, I. L.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[CrossRef] [PubMed]

Meixner, A. J.

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008).
[CrossRef]

Mi, C.-C.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Moon, W. K.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Morrish, D.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

Murphy, C. J.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Na, H. B.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Naccache, R.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[CrossRef]

Nie, S.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Nyk, M.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Ohulchanskyy, T. Y.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

Park, B.-J.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Park, S. P.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Park, Y. I.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Pollnau, M.

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

Prasad, P. N.

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

G. S. He, K.-T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Rodriguez, E. M.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Rojas, F.

G. Gordillo, F. Rojas, and C. Calderón, “Optical characterization of Cd(Sx,Te1-x) thin films deposited by evaporation,” Sup. y Vac. 16, 30–33 (2003).

Rufaihah, A. J.

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[CrossRef]

Ryasnyanskiy, A. I.

Sahoo, Y.

Salthouse, C.

S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
[CrossRef]

Salzberg, B. M.

J. A. Fisher, B. M. Salzberg, and A. G. Yodh, “Near infrared two-photon excitation cross-sections of voltage-sensitive dyes,” J. Neurosci. Methods 148(1), 94–102 (2005).
[CrossRef] [PubMed]

Sanz-Rodríguez, F.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Shao, F.

S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
[CrossRef]

Shukla, R.

N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009).
[CrossRef] [PubMed]

Sim, E. K. W.

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
[CrossRef] [PubMed]

Sisco, P. N.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Solé, J. G.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Song, I. C.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Steiner, M.

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008).
[CrossRef]

Stone, J. W.

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

Suh, Y. D.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Sun, Y.

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

Tian, Q.

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

Tong, L.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Uyeda, H. T.

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[CrossRef] [PubMed]

Vetrone, F.

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Vos, W. L.

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Wang, D.-S.

Wang, F.

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[CrossRef]

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[CrossRef] [PubMed]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, M.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Wang, W.-X.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Webb, W. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
[CrossRef]

Wei, A.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wei, Q.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Weissleder, R.

S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Wise, F. W.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

Wu, Y.-F.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Xiong, L.

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

Xu, C.

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt. 37(31), 7352–7356 (1998).
[CrossRef]

Xu, S.-K.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Xu, Z.-R.

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Yang, H.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Yang, W.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

Ye, L.

S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
[CrossRef] [PubMed]

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

Yi, G.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

Yodh, A. G.

J. A. Fisher, B. M. Salzberg, and A. G. Yodh, “Near infrared two-photon excitation cross-sections of voltage-sensitive dyes,” J. Neurosci. Methods 148(1), 94–102 (2005).
[CrossRef] [PubMed]

Yong, K.-T.

Yoon, S.-Y.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Yu, J. H.

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

Yu, M.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Zhan, C.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Zhang, Y.

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
[CrossRef] [PubMed]

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[CrossRef]

Zhao, S.

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

Zheng, Q.

Zhou, J.

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

Zipfel, W. R.

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721–1730 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

M. Wang, C.-C. Mi, W.-X. Wang, C.-H. Liu, Y.-F. Wu, Z.-R. Xu, C.-B. Mao, and S.-K. Xu, “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles,” ACS Nano 3(6), 1580–1586 (2009).
[CrossRef] [PubMed]

Adv. Mater. (2)

Y. I. Park, J. H. Kim, K. T. Lee, K.-S. Jeon, H. B. Na, J. H. Yu, H. M. Kim, N. Lee, S. H. Choi, S.-I. Baik, H. Kim, S. P. Park, B.-J. Park, Y. W. Kim, S. H. Lee, S.-Y. Yoon, I. C. Song, W. K. Moon, Y. D. Suh, and T. Hyeon, “Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent,” Adv. Mater. 21(44), 4467–4471 (2009).
[CrossRef]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21(48), 4880–4910 (2009).
[CrossRef]

Anal. Chem. (2)

L. Xiong, Z. Chen, Q. Tian, T. Cao, C. Xu, and F. Li, “High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors,” Anal. Chem. 81(21), 8687–8694 (2009).
[CrossRef] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.) 135(8), 1839–1854 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

Biomaterials (3)

D. K. Chatterjee, A. J. Rufaihah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[CrossRef]

N. M. Idris, Z. Li, L. Ye, E. K. W. Sim, R. Mahendran, P. C.-L. Ho, and Y. Zhang, “Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles,” Biomaterials 30(28), 5104–5113 (2009).
[CrossRef] [PubMed]

J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials 31(12), 3287–3295 (2010).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

S. A. Hilderbrand, F. Shao, C. Salthouse, U. Mahmood, and R. Weissleder, “Upconverting luminescent nanomaterials: application to in vivo bioimaging,” Chem. Commun. (Camb.) (28): 4188–4190 (2009).
[CrossRef]

Chem. Soc. Rev. (1)

F. Wang and X. G. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

F. Wang and X. Liu, “Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles,” J. Am. Chem. Soc. 130(17), 5642–5643 (2008).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(Pt 2), 83–104 (2000).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

J. A. Fisher, B. M. Salzberg, and A. G. Yodh, “Near infrared two-photon excitation cross-sections of voltage-sensitive dyes,” J. Neurosci. Methods 148(1), 94–102 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” J. Phys. Chem. B 109(34), 16350–16356 (2005).
[CrossRef]

J. Phys. Chem. C (1)

M. Steiner, C. Debus, A. V. Failla, and A. J. Meixner, “Plasmon-enhanced emission in gold nanoparticle aggregates,” J. Phys. Chem. C 112(8), 3103–3108 (2008).
[CrossRef]

Nano Lett. (5)

N. Chanda, R. Shukla, K. V. Katti, and R. Kannan, “Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging,” Nano Lett. 9(5), 1798–1805 (2009).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, and L.-H. Guo, “Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb,Er infrared-to-visible up-conversion phosphors,” Nano Lett. 4(11), 2191–2196 (2004).
[CrossRef]

M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Lett. 8(11), 3834–3838 (2008).
[CrossRef] [PubMed]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Nanoscale (1)

F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. M. Rodriguez, D. Jaque, J. G. Solé, and J. A. Capobianco, “Intracellular imaging of HeLa cells by non-functionalized NaYF4 : Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(4), 495–498 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

S. Jiang, Y. Zhang, K. M. Lim, E. K. W. Sim, and L. Ye, “NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA,” Nanotechnology 20(15), 155101 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Mater. (1)

I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4(6), 435–446 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Photochem. Photobiol. (1)

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (2)

M. Pollnau, D. Gamelin, S. Lüthi, H. Güdel, and M. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B 61(5), 3337–3346 (2000).
[CrossRef]

M. D. Leistikow, J. Johansen, A. J. Kettelarij, P. Lodahl, and W. L. Vos, “Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states,” Phys. Rev. B 79(4), 045301 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Science (2)

D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003).
[CrossRef] [PubMed]

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Sup. y Vac. (1)

G. Gordillo, F. Rojas, and C. Calderón, “Optical characterization of Cd(Sx,Te1-x) thin films deposited by evaporation,” Sup. y Vac. 16, 30–33 (2003).

Other (3)

S. Mulligan, and B. MacVicar, “Two-photon fluorescence microscopy: basic principles, advantages and risks,” in Modern Research and Educational Topics in Microscopy, A. Méndez-Vilas, and J. Díaz, eds. (FORMATEX, Badajoz, Spain, 2007), pp. 881–889.

It should be mentioned that both two and three power dependences have been reported for upconversion fluorescent gold nanoparticles (see references 9 and 31). Obviously this is related to the participation of different excited states within the involved bands of gold. However, a proper explanation for different observed results does not exist at present.

American National Standards Institute, “American National Standard for Safe use of Lasers,” (Laser Institute of America, Orlando, FL, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic excitation flow diagram corresponding to multiphoton excitation (full arrows pointing upwards) in (a) CdSe quantum dots (QDs) and gold nanorods (GNRs) as well as in (b) NaYF4:Er3+, Yb3+ nanoparticles (UCNPs). Note: Solid and dashed horizontal lines represent real electronic and virtual states, respectively while the dashed arrows represent a simplified two-step energy transfer process.

Fig. 2
Fig. 2

Left Side. (a) Multiphoton relative luminescence signal generated by the QD, GNR, and UCNP solution as obtained under fs laser excitation at 800, 830 and 980 nm, respectively. Pump intensity was 1 MW/cm2. (b) Multiphoton relative luminescence signal generated by the QD, GNR, and UCNP solution as obtained under cw laser excitation at 800, 830 and 980 nm, respectively. Pump intensity was 1 MW/cm2. Right Side. Photos corresponding to the naked eye observations of the fluorescent samples in Fig. 2(a), upper photos, and Fig. 2(b), bottom photos. The pump intensity was kept the same in both cases (CW and 100 fs excitation)

Fig. 3
Fig. 3

(a) Relative luminescence signal of QDs, GNRs, and UCNPs as a function of fs excitation intensity. (b) Excitation spectra of the multiphoton excited fluorescence for QDs, GNRs, and UCNPs. Pump intensity was 20 kW/cm2. Note: The excitation wavelengths used in Fig. 3(a) correspond to the peak maxima in the excitation spectra (Fig. 3(b)).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Θ 2 Q D Θ 2 U C N P = I 2 Q D I 2 U C N P n Q D n U C N P
V 2 e x c = 0.5 λ 3 N A 2 [ 1 n n 2 N A 2 ]

Metrics