Abstract

The effect of the spot diameter in nanosecond excimer laser percussion drilling of through via in silicon wafer is presented. Experimental results show a ten fold increase of the ablation efficiency when decreasing the spot diameter from 220 μm to 9 μm at constant fluence in the range 7.5 J/cm2 to 13.2 J/cm2. Such effect is absent when using 60 ps deep-UV laser pulses. A model is developed that explain the findings in terms of plume shielding effect on the laser pulse. The model is successfully applied also on previously published data on deep-UV laser drilling of Polyimide and Alumina.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Lee, and K. J. Choi, "Analysis of silicon via hole drilling for wafer level chip stacking by UV laser," Int. J. Precis. Eng. Manuf. 11, 501-507 (2010).
    [CrossRef]
  2. C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, "Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections," J. Micromech. Microeng. 17, 1200-1205 (2007).
    [CrossRef]
  3. K. P. Stolberg, B. Kremser, S. Friedel and Y. Atsuta, "Systematic optimization of process parameter in laser drilling of 200 μm photovoltaic silicon wafer using new kind of nanosecond IR laser," J. Laser Micro/Nanoeng. 4, 231-233 (2009).
    [CrossRef]
  4. S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
    [CrossRef]
  5. S. Lagomarsino, G. Parrini, S. Sciortino, A. Fossati, M. Citroni, G. Ferrari, F. Gorelli, M. Santoro, G. Molesini, M. Vannoni, A. Marras, A. Scorzoni, A. Ranieri, L. Berdondini, F. Brandi, R. Carzino, A. Diaspro, M. Scotto, and B. Torre, "New prospectives for the silicon-on-diamond material," Proceedings of Science RD09, 029 (2009).
  6. B. Tan, and K. Venkatakrishnan, "Nd-YAG laser microvia drilling for interconnection application," J. Micromech. Microeng. 17, 1511-1517 (2007).
    [CrossRef]
  7. B. Tan, S. Panchatsharam, and K. Venkatakrishnan, "High repetition rate femtosecond laser forming sub-10μm diameter interconnection vias," J. Phys. D Appl. Phys. 42, 065102 (2009).
    [CrossRef]
  8. B. Tan, "Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses," J. Micromech. Microeng. 16, 109-112 (2006).
    [CrossRef]
  9. S. T. Hendow, and S. A. Shakir, "Structuring materials with nanosecond laser pulses," Opt. Express 18, 10188-10199 (2010).
    [CrossRef] [PubMed]
  10. H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
    [CrossRef]
  11. "High precision drilling of ceramics," Highlights LambdaPhysik 34, 2-5 (1992).
  12. M. Eyett, and D. Bauerle, "Influence of beam spot size on ablation rates in pulsed-laser processing," Appl. Phys. Lett. 51, 2054-2055 (1987).
    [CrossRef]
  13. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, "Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys., A Mater. Sci. Process. 80, 237-241 (2005).
    [CrossRef]
  14. Y. F. Lu, M. H. Hong, and T. S. Low, "Laser plasma interaction at an early stage of laser ablation," J. Appl. Phys. 85, 2899-2903 (1999).
    [CrossRef]
  15. Q. Lu, S. S. Mao, X. Mao, and E. Russo, "Delayed phase explosion during high-power nanosecond laser ablation of silicon," Appl. Phys. Lett. 80, 3072-3074 (2002).
    [CrossRef]
  16. J. H. Yoo, S. H. Jeong, R. Greif, and E. Russo, "Explosive change in crater properties during high power nanosecond laser ablation of silicon," J. Appl. Phys. 88, 1638-1649 (2000).
    [CrossRef]

2010 (3)

Y. H. Lee, and K. J. Choi, "Analysis of silicon via hole drilling for wafer level chip stacking by UV laser," Int. J. Precis. Eng. Manuf. 11, 501-507 (2010).
[CrossRef]

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

S. T. Hendow, and S. A. Shakir, "Structuring materials with nanosecond laser pulses," Opt. Express 18, 10188-10199 (2010).
[CrossRef] [PubMed]

2009 (2)

K. P. Stolberg, B. Kremser, S. Friedel and Y. Atsuta, "Systematic optimization of process parameter in laser drilling of 200 μm photovoltaic silicon wafer using new kind of nanosecond IR laser," J. Laser Micro/Nanoeng. 4, 231-233 (2009).
[CrossRef]

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, "High repetition rate femtosecond laser forming sub-10μm diameter interconnection vias," J. Phys. D Appl. Phys. 42, 065102 (2009).
[CrossRef]

2007 (2)

B. Tan, and K. Venkatakrishnan, "Nd-YAG laser microvia drilling for interconnection application," J. Micromech. Microeng. 17, 1511-1517 (2007).
[CrossRef]

C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, "Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections," J. Micromech. Microeng. 17, 1200-1205 (2007).
[CrossRef]

2006 (1)

B. Tan, "Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses," J. Micromech. Microeng. 16, 109-112 (2006).
[CrossRef]

2005 (1)

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, "Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys., A Mater. Sci. Process. 80, 237-241 (2005).
[CrossRef]

2002 (1)

Q. Lu, S. S. Mao, X. Mao, and E. Russo, "Delayed phase explosion during high-power nanosecond laser ablation of silicon," Appl. Phys. Lett. 80, 3072-3074 (2002).
[CrossRef]

2000 (1)

J. H. Yoo, S. H. Jeong, R. Greif, and E. Russo, "Explosive change in crater properties during high power nanosecond laser ablation of silicon," J. Appl. Phys. 88, 1638-1649 (2000).
[CrossRef]

1999 (1)

Y. F. Lu, M. H. Hong, and T. S. Low, "Laser plasma interaction at an early stage of laser ablation," J. Appl. Phys. 85, 2899-2903 (1999).
[CrossRef]

1998 (1)

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
[CrossRef]

1992 (1)

"High precision drilling of ceramics," Highlights LambdaPhysik 34, 2-5 (1992).

1987 (1)

M. Eyett, and D. Bauerle, "Influence of beam spot size on ablation rates in pulsed-laser processing," Appl. Phys. Lett. 51, 2054-2055 (1987).
[CrossRef]

Atsuta, Y.

K. P. Stolberg, B. Kremser, S. Friedel and Y. Atsuta, "Systematic optimization of process parameter in laser drilling of 200 μm photovoltaic silicon wafer using new kind of nanosecond IR laser," J. Laser Micro/Nanoeng. 4, 231-233 (2009).
[CrossRef]

Bauerle, D.

M. Eyett, and D. Bauerle, "Influence of beam spot size on ablation rates in pulsed-laser processing," Appl. Phys. Lett. 51, 2054-2055 (1987).
[CrossRef]

Choi, K. J.

Y. H. Lee, and K. J. Choi, "Analysis of silicon via hole drilling for wafer level chip stacking by UV laser," Int. J. Precis. Eng. Manuf. 11, 501-507 (2010).
[CrossRef]

Citroni, M.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Eyett, M.

M. Eyett, and D. Bauerle, "Influence of beam spot size on ablation rates in pulsed-laser processing," Appl. Phys. Lett. 51, 2054-2055 (1987).
[CrossRef]

Fang, W.

C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, "Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections," J. Micromech. Microeng. 17, 1200-1205 (2007).
[CrossRef]

Fossati, A.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Friedel, S.

K. P. Stolberg, B. Kremser, S. Friedel and Y. Atsuta, "Systematic optimization of process parameter in laser drilling of 200 μm photovoltaic silicon wafer using new kind of nanosecond IR laser," J. Laser Micro/Nanoeng. 4, 231-233 (2009).
[CrossRef]

Gorelli, F.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Greif, R.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, "Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys., A Mater. Sci. Process. 80, 237-241 (2005).
[CrossRef]

J. H. Yoo, S. H. Jeong, R. Greif, and E. Russo, "Explosive change in crater properties during high power nanosecond laser ablation of silicon," J. Appl. Phys. 88, 1638-1649 (2000).
[CrossRef]

Hendow, S. T.

Hong, M. H.

Y. F. Lu, M. H. Hong, and T. S. Low, "Laser plasma interaction at an early stage of laser ablation," J. Appl. Phys. 85, 2899-2903 (1999).
[CrossRef]

Ihlemann, J.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
[CrossRef]

Jeong, S. H.

J. H. Yoo, S. H. Jeong, R. Greif, and E. Russo, "Explosive change in crater properties during high power nanosecond laser ablation of silicon," J. Appl. Phys. 88, 1638-1649 (2000).
[CrossRef]

Kremser, B.

K. P. Stolberg, B. Kremser, S. Friedel and Y. Atsuta, "Systematic optimization of process parameter in laser drilling of 200 μm photovoltaic silicon wafer using new kind of nanosecond IR laser," J. Laser Micro/Nanoeng. 4, 231-233 (2009).
[CrossRef]

Lagomarsino, S.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Lee, Y. H.

Y. H. Lee, and K. J. Choi, "Analysis of silicon via hole drilling for wafer level chip stacking by UV laser," Int. J. Precis. Eng. Manuf. 11, 501-507 (2010).
[CrossRef]

Lin, C. W.

C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, "Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections," J. Micromech. Microeng. 17, 1200-1205 (2007).
[CrossRef]

Low, T. S.

Y. F. Lu, M. H. Hong, and T. S. Low, "Laser plasma interaction at an early stage of laser ablation," J. Appl. Phys. 85, 2899-2903 (1999).
[CrossRef]

Lu, Q.

Q. Lu, S. S. Mao, X. Mao, and E. Russo, "Delayed phase explosion during high-power nanosecond laser ablation of silicon," Appl. Phys. Lett. 80, 3072-3074 (2002).
[CrossRef]

Lu, Y. F.

Y. F. Lu, M. H. Hong, and T. S. Low, "Laser plasma interaction at an early stage of laser ablation," J. Appl. Phys. 85, 2899-2903 (1999).
[CrossRef]

Luther, K.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
[CrossRef]

Mao, S. S.

Q. Lu, S. S. Mao, X. Mao, and E. Russo, "Delayed phase explosion during high-power nanosecond laser ablation of silicon," Appl. Phys. Lett. 80, 3072-3074 (2002).
[CrossRef]

Mao, X.

Q. Lu, S. S. Mao, X. Mao, and E. Russo, "Delayed phase explosion during high-power nanosecond laser ablation of silicon," Appl. Phys. Lett. 80, 3072-3074 (2002).
[CrossRef]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, "Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys., A Mater. Sci. Process. 80, 237-241 (2005).
[CrossRef]

Molesini, G.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Panchatsharam, S.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, "High repetition rate femtosecond laser forming sub-10μm diameter interconnection vias," J. Phys. D Appl. Phys. 42, 065102 (2009).
[CrossRef]

Parrini, G.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Russo, E.

Q. Lu, S. S. Mao, X. Mao, and E. Russo, "Delayed phase explosion during high-power nanosecond laser ablation of silicon," Appl. Phys. Lett. 80, 3072-3074 (2002).
[CrossRef]

J. H. Yoo, S. H. Jeong, R. Greif, and E. Russo, "Explosive change in crater properties during high power nanosecond laser ablation of silicon," J. Appl. Phys. 88, 1638-1649 (2000).
[CrossRef]

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, "Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys., A Mater. Sci. Process. 80, 237-241 (2005).
[CrossRef]

Santoro, M.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Schmidt, H.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
[CrossRef]

Sciortino, S.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Scorzoni, A.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Shakir, S. A.

Stolberg, K. P.

K. P. Stolberg, B. Kremser, S. Friedel and Y. Atsuta, "Systematic optimization of process parameter in laser drilling of 200 μm photovoltaic silicon wafer using new kind of nanosecond IR laser," J. Laser Micro/Nanoeng. 4, 231-233 (2009).
[CrossRef]

Tan, B.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, "High repetition rate femtosecond laser forming sub-10μm diameter interconnection vias," J. Phys. D Appl. Phys. 42, 065102 (2009).
[CrossRef]

B. Tan, and K. Venkatakrishnan, "Nd-YAG laser microvia drilling for interconnection application," J. Micromech. Microeng. 17, 1511-1517 (2007).
[CrossRef]

B. Tan, "Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses," J. Micromech. Microeng. 16, 109-112 (2006).
[CrossRef]

Troe, J.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
[CrossRef]

Vannoni, M.

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

Venkatakrishnan, K.

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, "High repetition rate femtosecond laser forming sub-10μm diameter interconnection vias," J. Phys. D Appl. Phys. 42, 065102 (2009).
[CrossRef]

B. Tan, and K. Venkatakrishnan, "Nd-YAG laser microvia drilling for interconnection application," J. Micromech. Microeng. 17, 1511-1517 (2007).
[CrossRef]

Wang, W. C.

C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, "Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections," J. Micromech. Microeng. 17, 1200-1205 (2007).
[CrossRef]

Wolff-Rottke, B.

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
[CrossRef]

Yang, H. A.

C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, "Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections," J. Micromech. Microeng. 17, 1200-1205 (2007).
[CrossRef]

Yoo, J. H.

J. H. Yoo, S. H. Jeong, R. Greif, and E. Russo, "Explosive change in crater properties during high power nanosecond laser ablation of silicon," J. Appl. Phys. 88, 1638-1649 (2000).
[CrossRef]

Zeng, X.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, "Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys., A Mater. Sci. Process. 80, 237-241 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

S. Lagomarsino, G. Parrini, S. Sciortino, M. Santoro, M. Citroni, M. Vannoni, A. Fossati, F. Gorelli, G. Molesini, and A. Scorzoni, "Silicon-on-diamond material by pulsed laser technique," Appl. Phys. Lett. 96, 031901 (2010).
[CrossRef]

M. Eyett, and D. Bauerle, "Influence of beam spot size on ablation rates in pulsed-laser processing," Appl. Phys. Lett. 51, 2054-2055 (1987).
[CrossRef]

Q. Lu, S. S. Mao, X. Mao, and E. Russo, "Delayed phase explosion during high-power nanosecond laser ablation of silicon," Appl. Phys. Lett. 80, 3072-3074 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, "Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon," Appl. Phys., A Mater. Sci. Process. 80, 237-241 (2005).
[CrossRef]

Highlights LambdaPhysik (1)

"High precision drilling of ceramics," Highlights LambdaPhysik 34, 2-5 (1992).

Int. J. Precis. Eng. Manuf. (1)

Y. H. Lee, and K. J. Choi, "Analysis of silicon via hole drilling for wafer level chip stacking by UV laser," Int. J. Precis. Eng. Manuf. 11, 501-507 (2010).
[CrossRef]

J. Appl. Phys. (3)

H. Schmidt, J. Ihlemann, B. Wolff-Rottke, K. Luther, and J. Troe, "Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained," J. Appl. Phys. 83, 5458-5468 (1998).
[CrossRef]

Y. F. Lu, M. H. Hong, and T. S. Low, "Laser plasma interaction at an early stage of laser ablation," J. Appl. Phys. 85, 2899-2903 (1999).
[CrossRef]

J. H. Yoo, S. H. Jeong, R. Greif, and E. Russo, "Explosive change in crater properties during high power nanosecond laser ablation of silicon," J. Appl. Phys. 88, 1638-1649 (2000).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

K. P. Stolberg, B. Kremser, S. Friedel and Y. Atsuta, "Systematic optimization of process parameter in laser drilling of 200 μm photovoltaic silicon wafer using new kind of nanosecond IR laser," J. Laser Micro/Nanoeng. 4, 231-233 (2009).
[CrossRef]

J. Micromech. Microeng. (3)

B. Tan, "Deep micro hole drilling in a silicon substrate using multi-bursts of nanosecond UV laser pulses," J. Micromech. Microeng. 16, 109-112 (2006).
[CrossRef]

B. Tan, and K. Venkatakrishnan, "Nd-YAG laser microvia drilling for interconnection application," J. Micromech. Microeng. 17, 1511-1517 (2007).
[CrossRef]

C. W. Lin, H. A. Yang, W. C. Wang, and W. Fang, "Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections," J. Micromech. Microeng. 17, 1200-1205 (2007).
[CrossRef]

J. Phys. D Appl. Phys. (1)

B. Tan, S. Panchatsharam, and K. Venkatakrishnan, "High repetition rate femtosecond laser forming sub-10μm diameter interconnection vias," J. Phys. D Appl. Phys. 42, 065102 (2009).
[CrossRef]

Opt. Express (1)

Other (1)

S. Lagomarsino, G. Parrini, S. Sciortino, A. Fossati, M. Citroni, G. Ferrari, F. Gorelli, M. Santoro, G. Molesini, M. Vannoni, A. Marras, A. Scorzoni, A. Ranieri, L. Berdondini, F. Brandi, R. Carzino, A. Diaspro, M. Scotto, and B. Torre, "New prospectives for the silicon-on-diamond material," Proceedings of Science RD09, 029 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Shot dose as function of spot diameter for different laser fluence of the 20 ns pulses. The dashed lines are the result of the fitting with the model function. The inset shows the results obtained with 60 ps pulses, and the dashed line represent the average value.

Fig. 2
Fig. 2

SEM images of drilled through holes: (a) top view, spot size 20 μm, fluence of 11 J/cm2; (b) bottom view, spot size 20 μm, fluence of 11 J/cm2; (c) top view, spot size 40 μm, fluence of 11 J/cm2; (d) top view, spot size 70 μm, fluence of 11 J/cm2.

Fig. 3
Fig. 3

Schematic of the laser plume interaction model.

Fig. 4
Fig. 4

Ablation efficiency for nanosecond laser drilling of Silicon.

Fig. 5
Fig. 5

Analytical model applied to data on percussion drilling with Excimer laser reported in the literature: (a) Polyimide [10]; (b) Alumina [11]. The data are reported as shot dose to drill a 50 μm thick sample for better comparison.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

π d 2 4 T ρ b = V p ρ p ,
V p = π h 4 ( d 2 + 2 h tan ( β ) d + ( 2 h tan ( β ) ) 2 3 )
F eff = F 0 exp ( α ρ p h ) ,
T = K ln ( F eff F t ) ,
SD = L T 0 + A d 2 d 2 + Gd + G 2 / 3 ,

Metrics