Abstract

We demonstrate a slot waveguide-based splitter for broadband terahertz (THz) radiation using a T-shaped waveguide structure. The structure consists of a fixed-width input waveguide and variable-width output waveguides. We experimentally measure and numerically simulate the THz transmission and reflection properties as a function of the output waveguide width and show that a transmission line model can effectively describe the observations. Based on the high degree of agreement between the experimental results, numerical simulations and the model, we infer the optimal waveguide parameters. The device structure offers new possibilities in designing compact THz devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).
  2. R. A. Soref and J. P. Lorenzo, “All silicon active and passive waveguide for λ= 1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
    [CrossRef]
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
    [CrossRef] [PubMed]
  4. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  5. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef]
  6. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
    [CrossRef]
  7. M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92(16), 161102 (2008).
    [CrossRef]
  8. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
    [CrossRef] [PubMed]
  9. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  10. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
    [CrossRef] [PubMed]
  11. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
    [CrossRef]
  12. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
    [CrossRef]
  13. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  14. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17(21), 19033–19040 (2009).
    [CrossRef]
  15. A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18(11), 11810–11820 (2010).
    [CrossRef] [PubMed]
  16. N. Marcuvitz, Waveguide Handbook (New York: McGraw-Hill, 1951).
  17. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994).
  18. T. H. Lee, Planar Microwave Engineering: A Practical Guide to Theory, Measurement, And Circuits (Cambridge University Press, Cambridge, 2004)
  19. A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23(11), 867–869 (1998).
    [CrossRef]
  20. A. Nahata, “Nonlinear optical generation and detection of ultrashort electrical pulses in transmission lines,” Opt. Lett. 26(6), 385–387 (2001).
    [CrossRef]

2010

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[CrossRef] [PubMed]

A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18(11), 11810–11820 (2010).
[CrossRef] [PubMed]

2009

2008

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92(16), 161102 (2008).
[CrossRef]

2007

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

2006

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

2005

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

2004

2001

1998

1996

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

1986

R. A. Soref and J. P. Lorenzo, “All silicon active and passive waveguide for λ= 1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[CrossRef]

1969

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

Abushagur, M. A. G.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Borghs, G.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[CrossRef] [PubMed]

Brixner, T.

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Chen, L.

Dionne, J. A.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Fan, S.

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Grischkowsky, D.

Hecht, B.

Heinz, T. F.

Huang, J.-S.

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92(16), 161102 (2008).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Lagae, L.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

Lipson, M.

Lorenzo, J. P.

R. A. Soref and J. P. Lorenzo, “All silicon active and passive waveguide for λ= 1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[CrossRef]

Lu, Z.

Marcatili, E. A. J.

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

McNab, S.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Mendis, R.

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92(16), 161102 (2008).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Nahata, A.

Neutens, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[CrossRef] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Reiserer, A. A.

Shakya, J.

Soref, R. A.

R. A. Soref and J. P. Lorenzo, “All silicon active and passive waveguide for λ= 1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Van Dorpe, P.

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[CrossRef] [PubMed]

Veronis, G.

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Vlasov, Y.

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92(16), 161102 (2008).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Wahsheh, R. A.

Appl. Phys. Lett.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Low-loss terahertz transmission through curved metallic slit waveguides fabricated by spark erosion,” Appl. Phys. Lett. 92(16), 161102 (2008).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. 48, 2103–2132 (1969).

IEEE J. Quantum Electron.

R. A. Soref and J. P. Lorenzo, “All silicon active and passive waveguide for λ= 1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986).
[CrossRef]

Nano Lett.

J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006).
[CrossRef] [PubMed]

P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides,” Nano Lett. 10(4), 1429–1432 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Phys. Rev. Lett.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Other

N. Marcuvitz, Waveguide Handbook (New York: McGraw-Hill, 1951).

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994).

T. H. Lee, Planar Microwave Engineering: A Practical Guide to Theory, Measurement, And Circuits (Cambridge University Press, Cambridge, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of two different slot waveguide geometries examined. (a) Two metal plates separated by a gap spacing of d1 = 100 µm forms the input waveguide. (b) A third metal sheet was included to form the two 2.5 cm long output waveguides. This third plate was placed on a translation stage, so that the width of the output waveguides, d2, could be varied between 100 and 300 µm. The thickness of the metal plates, w, was 1 mm. The values of Ei, where i = 0…6, and the associated dots correspond to points where the THz electric field could be measured. In all cases, the THz electric field was measured in the far-field. The double-sided red arrow shows the polarization of the input electric field.

Fig. 2
Fig. 2

Measured time-domain waveforms in the absence of the waveguide structure (red trace), at the output of the structure shown in Fig. 1(a) (black trace) and at the output of the structure shown in Fig. 1(b) (green trace).

Fig. 3
Fig. 3

The normalized amplitude spectra corresponding to the waveforms shown in Fig. 2.

Fig. 4
Fig. 4

Measured ratio of E4/E2 (filled circles), calculated as the average value between 0.1 and 0.8 THz from Fig. 2, as a function of d2/d1. (Inset) Measured ratio of E4/E2 for d1 = 100 µm and d2 = 200 µm as a function of frequency.

Fig. 5
Fig. 5

(a) The equivalent transmission line model for the waveguide geometry shown in Fig. 1(b). (b) Numerically calculated values of the amplitude reflection coefficient, r, as a function of d2/d1. The filled circles correspond to results from FDTD simulations with w = 1 mm and d1 = 100 µm, while the solid line corresponds to the fit using Eq. (1).

Fig. 6
Fig. 6

Ratio of E4/E2 as a function of d2/d1. The filled (black) circles correspond to experimental data, the filled (red) triangles correspond to results obtained from FDTD simulations scaled by a factor of 0.82, and the solid line corresponds to the best fit to Eq. (2) with ξ = 0.82 and no other free parameters.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = Z L Z 1 Z L + Z 1 = Z 2 2 Z 1 Z 2 + 2 Z 1
t = E 3 E 1 = 2 Z 2 ( 2 Z 1 + Z 2 ) .
E 4 E 2 = ξ 2 Z 2 ( Z o + Z 1 ) ( 2 Z 1 + Z 2 ) ( Z o + Z 2 ) ,

Metrics