Abstract

Rodent models of retinal degenerative diseases are used by vision scientists to develop therapies and to understand mechanisms of disease progression. Measurement of changes to the thickness of the various retinal layers provides an objective metric to evaluate the performance of the therapy. Because invasive histology is terminal and provides only a single data point, non-invasive imaging modalities are required to better study progression, and to reduce the number of animals used in research. Optical Coherence Tomography (OCT) has emerged as a dominant imaging modality for human ophthalmic imaging, but has only recently gained significant attention for rodent retinal imaging. OCT provides cross section images of retina with micron-scale resolution which permits measurement of the retinal layer thickness. However, in order to be useful to vision scientists, a significant fraction of the retinal surface needs to be measured. In addition, because the retinal thickness normally varies as a function of distance from optic nerve head, it is critical to sample all regions of the retina in a systematic fashion. We present a longitudinal study of OCT to measure retinal degeneration in rats which have undergone optic nerve axotomy, a well characterized form of rapid retinal degeneration. Volumetric images of the retina acquired with OCT in a time course study were segmented in 2D using a semi-automatic segmentation algorithm. Then, using a 3D algorithm, thickness measurements were quantified across the surface of the retina for all volume segmentations. The resulting maps of the changes to retinal thickness over time represent the progression of degeneration across the surface of the retina during injury. The computational tools complement OCT retinal volumetric acquisition, resulting in a powerful tool for vision scientists working with rodents.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009).
    [CrossRef] [PubMed]
  2. Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
    [CrossRef] [PubMed]
  3. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-13-25-10200 .
    [CrossRef] [PubMed]
  4. M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
    [CrossRef] [PubMed]
  5. R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
    [CrossRef] [PubMed]
  6. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
    [CrossRef] [PubMed]
  7. M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
    [CrossRef] [PubMed]
  8. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
    [CrossRef] [PubMed]
  9. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010), http://www.opticsinfobase.org.proxy.lib.sfu.ca/abstract.cfm?URI=oe-18-14-14730 .
    [CrossRef] [PubMed]
  10. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
    [CrossRef] [PubMed]
  11. M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-5-4074 .
    [CrossRef] [PubMed]
  12. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-26-23719 .
    [CrossRef]
  13. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009).
    [PubMed]
  14. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. V. Sarunic, “Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an Active Contour Approach,” IEEE Trans. Med. Imaging (Accepted).
    [PubMed]
  15. M. C. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
    [CrossRef] [PubMed]
  16. S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
    [CrossRef] [PubMed]
  17. F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
    [CrossRef] [PubMed]
  18. H. Q. Dinh, A. Yezzi, and G. Turk, “Texture Transfer During Shape Transformation,” ACM Trans. Graph. 24(2), 289–310 (2005).
    [CrossRef]

2010 (2)

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010), http://www.opticsinfobase.org.proxy.lib.sfu.ca/abstract.cfm?URI=oe-18-14-14730 .
[CrossRef] [PubMed]

2009 (7)

F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
[CrossRef] [PubMed]

M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-5-4074 .
[CrossRef] [PubMed]

A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-26-23719 .
[CrossRef]

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009).
[PubMed]

J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009).
[CrossRef] [PubMed]

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

2008 (1)

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

2005 (2)

2000 (1)

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[CrossRef] [PubMed]

1981 (1)

M. C. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

Abramoff, M. D.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Abràmoff, M. D.

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Aharon, I.

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[CrossRef] [PubMed]

Alward, W. L.

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

Bai, Y.

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Bizheva, K.

Brahimi, F.

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

Buchbinder, B. R.

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[CrossRef] [PubMed]

Burns, T. L.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Cabrera Fernández, D.

Campbell, M. C.

M. C. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

Cebulla, C.

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

Clausi, D. A.

Di Polo, A.

F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
[CrossRef] [PubMed]

Dinh, H. Q.

H. Q. Dinh, A. Yezzi, and G. Turk, “Texture Transfer During Shape Transformation,” ACM Trans. Graph. 24(2), 289–310 (2005).
[CrossRef]

Douillette, A.

F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
[CrossRef] [PubMed]

Drexler, W.

Duan, Y.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

Garvin, M. K.

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Greenlee, E. C.

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

Gregori, G.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Hackam, A.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Hamann, B.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

Hamarneh, G.

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009).
[PubMed]

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. V. Sarunic, “Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an Active Contour Approach,” IEEE Trans. Med. Imaging (Accepted).
[PubMed]

Hermann, B.

Hernandez, E.

Hofer, B.

Hughes, A.

M. C. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

Jiao, S.

M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-5-4074 .
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Jockovich, M. E.

M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-5-4074 .
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Jones, S. E.

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[CrossRef] [PubMed]

Kajic, V.

Kaluzny, J. J.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Kardon, R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Kwon, Y. H.

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

Lebrun-Julien, F.

F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
[CrossRef] [PubMed]

Lee, K.

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

Marshall, D.

Mishra, A.

Molday, L. L.

J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009).
[CrossRef] [PubMed]

Molday, R. S.

J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009).
[CrossRef] [PubMed]

Morquette, B.

F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
[CrossRef] [PubMed]

Murray, T. G.

Niemeijer, M.

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

Povazay, B.

Puliafito, C. A.

Rosin, P. L.

Ruggeri, M.

M. Ruggeri, G. Tsechpenakis, S. Jiao, M. E. Jockovich, C. Cebulla, E. Hernandez, T. G. Murray, and C. A. Puliafito, “Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography,” Opt. Express 17(5), 4074–4083 (2009), http://www.opticsinfobase.org.proxy.lib.sfu.ca/oe/abstract.cfm?URI=oe-17-5-4074 .
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Salinas, H. M.

Saragovi, H. U.

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
[CrossRef] [PubMed]

Sarunic, M.

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009).
[PubMed]

Sarunic, M. V.

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009).
[CrossRef] [PubMed]

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. V. Sarunic, “Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an Active Contour Approach,” IEEE Trans. Med. Imaging (Accepted).
[PubMed]

Sikorski, B.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Smith, B.

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009).
[PubMed]

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. V. Sarunic, “Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an Active Contour Approach,” IEEE Trans. Med. Imaging (Accepted).
[PubMed]

Sonka, M.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Srinivasan, V. J.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Szkulmowska, A.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Szkulmowski, M.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Tsechpenakis, G.

Turk, G.

H. Q. Dinh, A. Yezzi, and G. Turk, “Texture Transfer During Shape Transformation,” ACM Trans. Graph. 24(2), 289–310 (2005).
[CrossRef]

Wehbe, H.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Werner, J. S.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

Wong, A.

Wu, X.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

Xu, J.

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009).
[CrossRef] [PubMed]

Yazdanpanah, A.

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009).
[PubMed]

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. V. Sarunic, “Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an Active Contour Approach,” IEEE Trans. Med. Imaging (Accepted).
[PubMed]

Yezzi, A.

H. Q. Dinh, A. Yezzi, and G. Turk, “Texture Transfer During Shape Transformation,” ACM Trans. Graph. 24(2), 289–310 (2005).
[CrossRef]

Zawadzki, R. J.

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

Zhuo, Y.

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

ACM Trans. Graph. (1)

H. Q. Dinh, A. Yezzi, and G. Turk, “Texture Transfer During Shape Transformation,” ACM Trans. Graph. 24(2), 289–310 (2005).
[CrossRef]

Hum. Brain Mapp. (1)

S. E. Jones, B. R. Buchbinder, and I. Aharon, “Three-dimensional mapping of cortical thickness using Laplace’s equation,” Hum. Brain Mapp. 11(1), 12–32 (2000).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (3)

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. V. Sarunic, “Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an Active Contour Approach,” IEEE Trans. Med. Imaging (Accepted).
[PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

M. D. Abràmoff, K. Lee, M. Niemeijer, W. L. Alward, E. C. Greenlee, M. K. Garvin, M. Sonka, and Y. H. Kwon, “Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head,” Invest. Ophthalmol. Vis. Sci. 50(12), 5778–5784 (2009).
[CrossRef] [PubMed]

J. Xu, L. L. Molday, R. S. Molday, and M. V. Sarunic, “In vivo imaging of the mouse model of X-linked juvenile retinoschisis with fourier domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 50(6), 2989–2993 (2009).
[CrossRef] [PubMed]

Y. Bai, J. Xu, F. Brahimi, Y. Zhuo, M. V. Sarunic, and H. U. Saragovi, “An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma,” Invest. Ophthalmol. Vis. Sci. 51(9), 4722–4731 (2010).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).
[CrossRef] [PubMed]

R. J. Zawadzki, A. R. Fuller, D. F. Wiley, B. Hamann, S. S. Choi, and J. S. Werner, “Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets,” J. Biomed. Opt. 12(4), 041206 (2007).
[CrossRef] [PubMed]

Med Image Comput Comput Assist Interv (1)

A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal layer segmentation in optical coherence tomography using an active contour approach,” Med Image Comput Comput Assist Interv 12(Pt 2), 649–656 (2009).
[PubMed]

Mol. Cell. Neurosci. (1)

F. Lebrun-Julien, B. Morquette, A. Douillette, H. U. Saragovi, and A. Di Polo, “Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells,” Mol. Cell. Neurosci. 40(4), 410–420 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Vision Res. (1)

M. C. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21(7), 1129–1148 (1981).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Representative FDOCT rat retina volume. Thickness changes to the NGI can be observed between (B) a control eye and (C) an eye 14 days after axotomy.

Fig. 2
Fig. 2

(A) The original FD OCT B-scan of a rat retina and manual initialization points (green). (B) The segmentation for the NGI layers only using the active contour algorithm [13,14].

Fig. 3
Fig. 3

The thickness measurement between the two segmented surfaces of the retina.

Fig. 4
Fig. 4

False colour 2D thickness maps of the NGI overlaid on the reconstructed fundus images.

Fig. 5
Fig. 5

Average thickness of the NGI as a function of distance from the optic nerve head. OS: left eye, control; OD: right eye with optic nerve transection.

Metrics