Abstract

We demonstrate the detection of nitric oxide in both air and nitrogen atmospheres with a 5.2 μm distributed-feedback quantum cascade laser in a quartz-enhanced photoacoustic spectroscopy system. The photoacoustic signal generated by nitric oxide is shown to be several times larger in air than in nitrogen due to the faster vibrational-translational energy relaxation process induced by the presence of oxygen. A sensitivity of 2.5 parts-per-million by volume is achieved in air at atmospheric pressure.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
    [CrossRef]
  2. A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
    [CrossRef]
  3. A. Elia, P. M. Lugarà, and C. Giancaspro, “Photoacoustic detection of nitric oxide by use of a quantum-cascade laser,” Opt. Lett. 30(9), 988–990 (2005).
    [CrossRef] [PubMed]
  4. V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
    [CrossRef]
  5. F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
    [CrossRef]
  6. Frequency data from HITRAN database, www.cfa.harvard.edu/hitran
  7. R. E. Murphy, E. T. P. Lee, and A. M. Hart, “Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen,” J. Chem. Phys. 63(7), 2919–2925 (1975).
    [CrossRef]

2010

V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
[CrossRef]

2009

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

2005

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef]

A. Elia, P. M. Lugarà, and C. Giancaspro, “Photoacoustic detection of nitric oxide by use of a quantum-cascade laser,” Opt. Lett. 30(9), 988–990 (2005).
[CrossRef] [PubMed]

1975

R. E. Murphy, E. T. P. Lee, and A. M. Hart, “Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen,” J. Chem. Phys. 63(7), 2919–2925 (1975).
[CrossRef]

Bakhirkin, Y. A.

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef]

Caneau, C. G.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

Coleman, S.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

Dong, L.

V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
[CrossRef]

Elia, A.

Giancaspro, C.

Hart, A. M.

R. E. Murphy, E. T. P. Lee, and A. M. Hart, “Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen,” J. Chem. Phys. 63(7), 2919–2925 (1975).
[CrossRef]

Hughes, L. C.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

Kosterev, A. A.

V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
[CrossRef]

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef]

LeBlanc, H. P.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

Lee, E. T. P.

R. E. Murphy, E. T. P. Lee, and A. M. Hart, “Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen,” J. Chem. Phys. 63(7), 2919–2925 (1975).
[CrossRef]

Lewicki, L.

V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
[CrossRef]

Lugarà, P. M.

Malinovsky, A. L.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[CrossRef]

Morozov, I. V.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[CrossRef]

Murphy, R. E.

R. E. Murphy, E. T. P. Lee, and A. M. Hart, “Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen,” J. Chem. Phys. 63(7), 2919–2925 (1975).
[CrossRef]

Serebryakov, D. V.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[CrossRef]

Spagnolo, V.

V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
[CrossRef]

Tittel, F.

V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
[CrossRef]

Tittel, F. K.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef]

Visovsky, N. J.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

Xie, F.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

Zah, C.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

Appl. Phys. B

A. A. Kosterev, Y. A. Bakhirkin, and F. K. Tittel, “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B 80(1), 133–138 (2005).
[CrossRef]

V. Spagnolo, A. A. Kosterev, L. Dong, L. Lewicki, and F. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010).
[CrossRef]

Appl. Phys. Lett.

F. Xie, C. G. Caneau, H. P. LeBlanc, N. J. Visovsky, S. Coleman, L. C. Hughes, and C. Zah, “High-temperature continuous-wave operation of low power consumption single-mode distributed-feedback quantum cascade laser,” Appl. Phys. Lett. 95(9), 091110 (2009).
[CrossRef]

J. Chem. Phys.

R. E. Murphy, E. T. P. Lee, and A. M. Hart, “Quenching of vibrationally excited nitric oxide by molecular oxygen and nitrogen,” J. Chem. Phys. 63(7), 2919–2925 (1975).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum. 76(4), 043105 (2005).
[CrossRef]

Other

Frequency data from HITRAN database, www.cfa.harvard.edu/hitran

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Layout of QEPAS system.

Fig. 2
Fig. 2

(a) Amplitude and (b) Phase of tuning fork response to photoacoustic signal.

Fig. 3
Fig. 3

Fourier amplitude of f0 component of NO relaxation as a function of oxygen concentration

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k ( x ) = n [ 1.7 × 10 16 ( 1 x ) + 2.4 × 10 14 x ]
f ( t , x ) = A e k ( x ) t , 0 t 2 f 0 , f ( t + 2 N f 0 , x ) = f ( t , x )

Metrics