Abstract

In this paper, we demonstrated a far-field scheme for the manipulation of locally excited surface plasmon polaritons (SPPs). This scheme features steering and shaping capabilities, and relies on the focusing of a high numerical aperture, in conjunction with spatially inhomogeneous polarized (SIP) illumination. We were able to control the propagation and direction of SPPs, via the field distribution of polarization at the entrance pupil, without the need for an aperture, protrusion or any other near-field features. Depending on the axial position of the focus, the field distribution of excited SPPs revealed either counter-propagating interference or a multi-casting plasmonic source. The results of near-field imaging demonstrated the versatility of the SPPs, showing strong agreement with the predictions made during simulations. Due to the simplicity and versatility of the proposed method, we believe that it could have a significant impact the processes employed in the excitation of a variety of SPPs.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
    [CrossRef]
  4. F. I. Baida, D. Van Labeke, A. Bouhelier, T. Huser, and D. W. Pohl, “Propagation and diffraction of locally excited surface plasmons,” J. Opt. Soc. Am. A 18(7), 1552–1561 (2001).
    [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  6. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [CrossRef] [PubMed]
  7. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
    [CrossRef]
  8. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  9. A. G. Curto and F. J. G. Abajo, “Near-field optical phase antennas for long-range plasmon coupling,” Nano Lett. 8(8), 2479–2484 (2008).
    [CrossRef] [PubMed]
  10. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
    [CrossRef] [PubMed]
  11. Q. W. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  12. W. B. Chen and Q. W. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
    [CrossRef] [PubMed]
  13. Z. J. Hu, P. S. Tan, S. W. Zhu, and X. C. Yuan, “Structured light for focusing surface plasmon polaritons,” Opt. Express 18(10), 10864–10870 (2010).
    [CrossRef] [PubMed]
  14. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46(33), 8061–8067 (2007).
    [CrossRef] [PubMed]
  15. B. H. Jia, X. S. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13(18), 6821–6827 (2005).
    [CrossRef] [PubMed]
  16. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J. F. O. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005).
    [CrossRef]
  17. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45(33), 8393–8399 (2006).
    [CrossRef] [PubMed]
  18. I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
    [CrossRef]
  19. A. K. Spilman and T. G. Brown, “Stress birefringent, space-variant wave plates for vortex illumination,” Appl. Opt. 46(1), 61–66 (2007).
    [CrossRef]
  20. L. Z. Rao, J. X. Pu, Z. Y. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 241–246 (2009).
  21. D. Kalaidji, M. Spajer, N. Marthouret, and T. Grosjean, “Radially polarized conical beam from an embedded etched fiber,” Opt. Lett. 34(12), 1780–1782 (2009).
    [CrossRef] [PubMed]
  22. M. G. Somekh, G. Stabler, S. G. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett. 34(20), 3110–3112 (2009).
    [CrossRef] [PubMed]
  23. T. Wilson, R. Juskaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141(5-6), 298–313 (1997).
    [CrossRef]
  24. L. Novotny, and B. Hecht, “Principles of Nano-optics,” (Cambridge U. Press, 2006).
  25. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes - structure of the electromagnetic-field. 1,” J. Opt. Soc. Am. A 12(10), 2136–2144 (1995).
    [CrossRef]
  26. E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
    [CrossRef]
  27. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [CrossRef]
  28. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6(6), 786–805 (1989).
    [CrossRef]
  29. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [CrossRef] [PubMed]
  30. T. Grosjean, F. Baida, and D. Courjon, “Conical optics: the solution to confine light,” Appl. Opt. 46(11), 1994–2000 (2007).
    [CrossRef] [PubMed]
  31. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
    [CrossRef]
  32. P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, and R. E. Burge, “Analysis of surface plasmon interference pattern formed by optical vortex beams,” Opt. Express 16(22), 18451–18456 (2008).
    [CrossRef] [PubMed]
  33. P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
    [CrossRef]
  34. A. Bouhelier and G. P. Wiederrecht, “Surface plasmon rainbow jets,” Opt. Lett. 30(8), 884–886 (2005).
    [CrossRef] [PubMed]
  35. M. F. Xiao, R. Machorro, and J. Siqueiros, “Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration,” J. Vac. Sci. Technol. A 16(3), 1420–1424 (1998).
    [CrossRef]
  36. D. Van Labeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy - a theoretical comparison,” J. Opt. Soc. Am. A 10(10), 2193–2201 (1993).
    [CrossRef]

2010 (1)

2009 (4)

2008 (3)

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, and R. E. Burge, “Analysis of surface plasmon interference pattern formed by optical vortex beams,” Opt. Express 16(22), 18451–18456 (2008).
[CrossRef] [PubMed]

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
[CrossRef]

A. G. Curto and F. J. G. Abajo, “Near-field optical phase antennas for long-range plasmon coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (2)

2005 (4)

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

2001 (1)

1998 (2)

M. F. Xiao, R. Machorro, and J. Siqueiros, “Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration,” J. Vac. Sci. Technol. A 16(3), 1420–1424 (1998).
[CrossRef]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
[CrossRef]

1997 (2)

T. Wilson, R. Juskaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141(5-6), 298–313 (1997).
[CrossRef]

S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

1996 (1)

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

1995 (1)

1993 (1)

1989 (1)

1988 (1)

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).

1959 (2)

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Abajo, F. J. G.

A. G. Curto and F. J. G. Abajo, “Near-field optical phase antennas for long-range plasmon coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

Aït-Ameur, K.

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Baida, F.

Baida, F. I.

Barchiesi, D.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Booker, G. R.

Bouhelier, A.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

Brown, D. E.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Brown, T. G.

Bruyant, A.

Burge, R. E.

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, and R. E. Burge, “Analysis of surface plasmon interference pattern formed by optical vortex beams,” Opt. Express 16(22), 18451–18456 (2008).
[CrossRef] [PubMed]

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
[CrossRef]

Chang, R. S.

Charraut, D.

Chen, W. B.

Chen, Z. Y.

L. Z. Rao, J. X. Pu, Z. Y. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 241–246 (2009).

Colas des Francs, G.

Courjon, D.

Curto, A. G.

A. G. Curto and F. J. G. Abajo, “Near-field optical phase antennas for long-range plasmon coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

de Saint Denis, R.

Dereux, A.

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Gan, X. S.

Grosjean, T.

Gu, M.

Hecht, B.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Hierle, R.

Higdon, P.

T. Wilson, R. Juskaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141(5-6), 298–313 (1997).
[CrossRef]

Hiller, J. M.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hu, Z. J.

Hua, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Huang, C.

Huser, T.

Ibrahim, I. A.

Iglesias, I.

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[CrossRef]

Ignatovich, F.

Inouye, Y.

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Jia, B. H.

Juskaitis, R.

T. Wilson, R. Juskaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141(5-6), 298–313 (1997).
[CrossRef]

Kalaidji, D.

Kano, H.

Kawata, S.

Kimball, C. W.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Leitner, A.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Lin, J.

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
[CrossRef]

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, and R. E. Burge, “Analysis of surface plasmon interference pattern formed by optical vortex beams,” Opt. Express 16(22), 18451–18456 (2008).
[CrossRef] [PubMed]

Liu, S. G.

Machorro, R.

M. F. Xiao, R. Machorro, and J. Siqueiros, “Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration,” J. Vac. Sci. Technol. A 16(3), 1420–1424 (1998).
[CrossRef]

Mansuripur, M.

Marthouret, N.

Mei, T.

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
[CrossRef]

Mizuguchi, S.

Mu, G. G.

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
[CrossRef]

Nesterov, A. V.

Niziev, V. G.

Novotny, L.

Passilly, N.

Pearson, J.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Piquerey, V.

Pohl, D. W.

F. I. Baida, D. Van Labeke, A. Bouhelier, T. Huser, and D. W. Pohl, “Propagation and diffraction of locally excited surface plasmons,” J. Opt. Soc. Am. A 18(7), 1552–1561 (2001).
[CrossRef]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Pu, J. X.

L. Z. Rao, J. X. Pu, Z. Y. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 241–246 (2009).

Pudonin, F. A.

S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

Raether, H.

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).

Rao, L. Z.

L. Z. Rao, J. X. Pu, Z. Y. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 241–246 (2009).

Richards, B.

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Roch, J. F. O.

Saleh, S. S.

Sandoz, P.

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

See, C. W.

Siqueiros, J.

M. F. Xiao, R. Machorro, and J. Siqueiros, “Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration,” J. Vac. Sci. Technol. A 16(3), 1420–1424 (1998).
[CrossRef]

Somekh, M. G.

Spajer, M.

Spilman, A. K.

Stabler, G.

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

Suarez, M. A.

Tan, P. S.

Török, P.

Treussart, F.

Van Labeke, D.

Varga, P.

Vlasko-Vlasov, V. K.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Vohnsen, B.

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[CrossRef]

Wang, Q.

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
[CrossRef]

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, and R. E. Burge, “Analysis of surface plasmon interference pattern formed by optical vortex beams,” Opt. Express 16(22), 18451–18456 (2008).
[CrossRef] [PubMed]

Weeber, J. C.

Welp, U.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wiederrecht, G. P.

Wilson, T.

T. Wilson, R. Juskaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141(5-6), 298–313 (1997).
[CrossRef]

Wolf, E.

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Xiao, M. F.

M. F. Xiao, R. Machorro, and J. Siqueiros, “Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration,” J. Vac. Sci. Technol. A 16(3), 1420–1424 (1998).
[CrossRef]

Yei, P.

L. Z. Rao, J. X. Pu, Z. Y. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 241–246 (2009).

Yin, L. L.

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Yuan, X. C.

Zhan, Q. W.

Zhang, J.

Zhu, S. W.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

P. S. Tan, X. C. Yuan, J. Lin, Q. Wang, T. Mei, R. E. Burge, and G. G. Mu, “Surface plasmon polaritons generated by optical vortex beams,” Appl. Phys. Lett. 92(11), 3 (2008).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. A (1)

M. F. Xiao, R. Machorro, and J. Siqueiros, “Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration,” J. Vac. Sci. Technol. A 16(3), 1420–1424 (1998).
[CrossRef]

Nano Lett. (2)

L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

A. G. Curto and F. J. G. Abajo, “Near-field optical phase antennas for long-range plasmon coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[CrossRef]

T. Wilson, R. Juskaitis, and P. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarisation microscopes,” Opt. Commun. 141(5-6), 298–313 (1997).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

L. Z. Rao, J. X. Pu, Z. Y. Chen, and P. Yei, “Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens,” Opt. Laser Technol. 41, 241–246 (2009).

Opt. Lett. (6)

Phys. Rev. Lett. (3)

S. I. Bozhevolnyi and F. A. Pudonin, “Two-dimensional micro-optics of surface plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77(9), 1889–1892 (1996).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Springer Tracts Mod. Phys. (1)

H. Raether, “Surface-plasmons on smooth and rough surfaces and on gratings,” Springer Tracts Mod. Phys. 111, 1–133 (1988).

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Novotny, and B. Hecht, “Principles of Nano-optics,” (Cambridge U. Press, 2006).

Supplementary Material (4)

» Media 1: MOV (2930 KB)     
» Media 2: MOV (791 KB)     
» Media 3: MOV (1696 KB)     
» Media 4: MOV (3081 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic diagram of the optical setup for steering and shaping SPPs, utilizing spatially inhomogeneous polarized (SIP) illumination. The table [right side of Fig. 1(a)] shows the parameters of the proposed optical setup with a working wavelength of λ0 = 632.8 nm. The SIP beams were grouped into three schemes [Fig. 1(b)]: single, double and triple excitation, respectively. Three parameters were adjusted to identify the character of the features of SIP beams; where δϕ represents the size of the TM-polarized sector at the pupil entrance, ϕ0 is the center of angular arc of TM-polarized sector, and Δϕ represents the angular distance between two TM-polarized sectors.

Fig. 2
Fig. 2

A schematic diagram of the mechanism used to generate surface plasmon waves originating from a virtual annular ring via spatially inhomogeneous polarized beams. The virtual annular ring is the cross section between the light cone and the observation plane, and it consists of red and gray arcs which indicate the positions of TM- or TE-polarized rays impinged, respectively.

Fig. 3
Fig. 3

The calculated field distribution of SPPs when the SIP beam was focused on the Au/Air interface. Subfigures (a) to (h) display single excitations with different ratios of TM-polarization (indicated with black arrows along the radial direction, indicated by the white background) at the pupil entrance, where (a) ϕ0 = 202.5° and δϕ = 22.5°, (b) ϕ0 = 22.5° and δϕ = 45°, (c) ϕ0 = 90° and δϕ = 45°, (d) ϕ0 = 67.5° and δϕ = 135°, (e) ϕ0 = 90° and δϕ = 180°, (f) ϕ0 = 112.5° and δϕ = 225°, (g) ϕ0 = 135° and δϕ = 270°, (h) ϕ0 = 157.5° and δϕ = 315°.

Fig. 4
Fig. 4

A (left) (2.93 MB Media 1), b(right) (791 KB Media 2) two animations of field distribution for double excited SPPs generated by purposely designed SIP beams, with the point of observation lying on the plane of focus. (a) the TM-polarized sector is divided into two part with equal δϕ but varied in Δϕ. As Δϕ changed from 0° to 270°, the interferometric patterns of two oblique plasmonic waves show additional outer swayed edges. (b) the polarization distribution of SIP beam consists of double TM-polarized sectors which was arranged on the opposite side with variations in the size of δϕ. A clear plasmonic interference pattern spreading along vertical direction can be observed due to the counterpropagation of the SPPs.

Fig. 5
Fig. 5

a(left) (1.69 MB Media 3), b(right) (3.08 MB Media 4) two animations of field distribution for dual excited SPPs, generated by purposely designed SIP beams with the observation plane scanning through the focus. Movie a and movie b shows the field distribution of SPPs under specific SIP illuminating with dual and triple TM-polarized sectors (with equal δϕ = 45°), respectively.

Fig. 6
Fig. 6

A comparison of two-dimensional intensity distribution of SPPs between (a) – (e) experimental and (f) – (j) simulation results, where (a) single excitation with δϕ = 45°, (b) double excitation with Δϕ = 135° and δϕ = 15°, (c) double excitation with Δϕ = 45° and δϕ = 45°, (d) triple excitation with Δϕ = 75°, δϕ = 45°, and z = −0.75 um, and (e) triple excitation with Δϕ = 75°, δϕ = 45°, and z = + 1 um.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E t o t a l ( r , φ ) = Φ 1 Φ 2 d E S P ( φ ) d φ d φ + Φ 3 Φ 4 d E S P ( φ ) d φ d φ + ...
E S P ( r , φ ) = E 0 ( r , φ ) e α d ( φ , L ) e i β d ( φ , L )
d ( φ ,L ) = L r cos ( φ φ 0 )

Metrics