Abstract

A new method for creating microcantilevers in glass allows integration of optical waveguides and Bragg gratings. Devices are fabricated by high precision sawing, followed by direct UV writing of waveguides with Bragg gratings and then chemical etching to release the freestanding glass structures. Optical measurement of the Bragg gratings together with piezo-actuation allows the mechanical resonances to be probed. By measuring the mechanical damping coefficient of the cantilever as a function of the gas pressure in a vacuum system the transition from the viscous to the molecular flow regime can be observed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
    [CrossRef]
  2. J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
    [CrossRef]
  3. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
    [CrossRef] [PubMed]
  4. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
    [CrossRef] [PubMed]
  5. E. Gaura, R. Newman, and M. Kraft, Smart MEMS and Sensor Systems (Imperial College Press, 2006), Chap. 2.
  6. J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
    [CrossRef]
  7. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [CrossRef] [PubMed]
  8. G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
    [CrossRef]
  9. H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
    [CrossRef] [PubMed]
  10. T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and Fabry-Perot Interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
    [CrossRef]
  11. N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
    [CrossRef]
  12. C. S. Baldwin, Springer Handbook Of Experimental Solid Mechanics, W.N. Sharpe Jr., ed., (Springer, 2008), Chap. 14.
  13. L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
    [CrossRef]
  14. X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
    [CrossRef]
  15. G. R. Fowles, and G. L. Cassiday, Analytical Mechanics, (Saunders College, 1993), Chap. 3.
  16. H. Kumazaki, S. Inaba, and K. Hane, “Pressure dependence of resonance characteristics of the microcantilever fabricated from optical fiber,” Vacuum 47(6-8), 475–477 (1996).
    [CrossRef]

2010 (1)

2009 (2)

P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
[CrossRef] [PubMed]

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

2008 (1)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

2006 (1)

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

2004 (4)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and Fabry-Perot Interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[CrossRef]

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

2003 (1)

L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
[CrossRef]

2002 (1)

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
[CrossRef]

1998 (1)

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

1996 (1)

H. Kumazaki, S. Inaba, and K. Hane, “Pressure dependence of resonance characteristics of the microcantilever fabricated from optical fiber,” Vacuum 47(6-8), 475–477 (1996).
[CrossRef]

Ambran, S.

Andrés, M. V.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
[CrossRef]

Bernussi, A. A.

L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
[CrossRef]

Bonar, J. R.

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Boneberg, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Borhani, M. M.

L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
[CrossRef]

Bouwmeester, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Bratschitsch, R.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Buttgenbach, S.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

Cadarso, V. J.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

Chen, X.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Cruz, J. L.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
[CrossRef]

Datskos, P. G.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Davies, J.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Davies, M. C.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Dawkes, A. C.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Díez, A.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
[CrossRef]

Dominguez, C.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

Doucette, D. E.

L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
[CrossRef]

Edwards, J. C.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Emmerson, G. D.

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Gangopadhyay, T. K.

T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and Fabry-Perot Interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[CrossRef]

Gates, J. C.

Gawith, C. B. E.

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Grave de Peralta, L.

L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
[CrossRef]

Halm, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Hane, K.

H. Kumazaki, S. Inaba, and K. Hane, “Pressure dependence of resonance characteristics of the microcantilever fabricated from optical fiber,” Vacuum 47(6-8), 475–477 (1996).
[CrossRef]

Holmes, C.

Inaba, S.

H. Kumazaki, S. Inaba, and K. Hane, “Pressure dependence of resonance characteristics of the microcantilever fabricated from optical fiber,” Vacuum 47(6-8), 475–477 (1996).
[CrossRef]

Kahl, M.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Karrai, K.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Kleckner, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Kumazaki, H.

H. Kumazaki, S. Inaba, and K. Hane, “Pressure dependence of resonance characteristics of the microcantilever fabricated from optical fiber,” Vacuum 47(6-8), 475–477 (1996).
[CrossRef]

Laming, R. I.

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Lavrik, N. V.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Leiderer, P.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Leitenstorfer, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Llobera, A.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

McMeekin, S. G.

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Merlein, J.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Mora, J.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
[CrossRef]

Plaza, J. A.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

Reano, R. M.

Roberts, C. J.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Rogers, H. L.

Sell, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Sepaniak, M. J.

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Smith, P. G. R.

H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, and J. C. Gates, “In situ loss measurement of direct UV-written waveguides using integrated Bragg gratings,” Opt. Lett. 35(17), 2849–2851 (2010).
[CrossRef] [PubMed]

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Sun, P.

Temkin, H.

L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
[CrossRef]

Tendler, S. J. B.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Vila, J.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

Villatoro, J.

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
[CrossRef]

Watts, S. P.

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Williams, P. M.

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Williams, R. B.

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

Zinoviev, K.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

Zuschlag, A.

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

IEE Proc. J. Optoelectron (1)

G. D. Emmerson, C. B. E. Gawith, S. P. Watts, R. B. Williams, P. G. R. Smith, S. G. McMeekin, J. R. Bonar, and R. I. Laming, “All-UV-written integrated planar Bragg gratings and channel waveguides through single-step direct grating writing,” IEE Proc. J. Optoelectron 151, 119–121 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Grave de Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, and D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39(7), 874–879 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, and J. A. Plaza, “Poly(Dimethylsiloxane) Waveguide Cantilevers for Optomechanical Sensing,” IEEE Photon. Technol. Lett. 21(2), 79–81 (2009).
[CrossRef]

Nat. Photonics (1)

J. Merlein, M. Kahl, A. Zuschlag, A. Sell, A. Halm, J. Boneberg, P. Leiderer, A. Leitenstorfer, and R. Bratschitsch, “Nanomechanical control of an optical antenna,” Nat. Photonics 2(4), 230–233 (2008).
[CrossRef]

Nature (2)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Mora, J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “Tunable chirp in Bragg gratings written in tapered core fibers,” Opt. Commun. 210(1-2), 51–55 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

N. V. Lavrik, M. J. Sepaniak, and P. G. Datskos, “Cantilever transducers as a platform for chemical and biological sensors,” Rev. Sci. Instrum. 75(7), 2229–2253 (2004).
[CrossRef]

Sens. Actuators A Phys. (1)

T. K. Gangopadhyay, “Prospects for Fibre Bragg Gratings and Fabry-Perot Interferometers in fibre-optic vibration sensing,” Sens. Actuators A Phys. 113(1), 20–38 (2004).
[CrossRef]

Ultramicroscopy (1)

X. Chen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dawkes, and J. C. Edwards, “Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements,” Ultramicroscopy 75(3), 171–181 (1998).
[CrossRef]

Vacuum (1)

H. Kumazaki, S. Inaba, and K. Hane, “Pressure dependence of resonance characteristics of the microcantilever fabricated from optical fiber,” Vacuum 47(6-8), 475–477 (1996).
[CrossRef]

Other (3)

G. R. Fowles, and G. L. Cassiday, Analytical Mechanics, (Saunders College, 1993), Chap. 3.

C. S. Baldwin, Springer Handbook Of Experimental Solid Mechanics, W.N. Sharpe Jr., ed., (Springer, 2008), Chap. 14.

E. Gaura, R. Newman, and M. Kraft, Smart MEMS and Sensor Systems (Imperial College Press, 2006), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Glass microcantilever with pigtail couple.

Fig. 2
Fig. 2

Microcantilever with waveguides.

Fig. 3
Fig. 3

Microcantilever dimensions.

Fig. 4
Fig. 4

Bragg grating reflection spectra

Fig. 5
Fig. 5

Cantilever’s frequency response

Fig. 6
Fig. 6

Calculated damping coefficient

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B λ B = ε ε n e f f 2 2 ( p 12 υ ( p 11 + p 12 ) ) .
Δ λ B λ B 0.8 ε .
A ( ω ) = F o m [ ( ω o 2 ω 2 ) 2 + 4 γ 2 ω 2 ] 1 2 .

Metrics